4 research outputs found

    Accelerating phase unwrapping and affine transformations for optical quadrature microscopy using CUDA

    Get PDF
    Optical Quadrature Microscopy (OQM) is a process which uses phase data to capture information about the sample being studied. OQM is part of an imaging framework developed by the Optical Science Laboratory at Northeastern University. In one particular application of interest, the framework is used to extract phase information from the image of an embryo to determine embryo viability. Phase Unwrapping is the process of reconstructing the real phase shift (propagation delay) of a sample from the measured “wrapped“ representation which is between −π and +π. Unwrapping can be done using the Minimum L P Norm Phase Unwrap algorithm. Images are first preprocessed using an Affine Transform before they are unwrapped. Both of these steps are time consuming and would benefit greatly from parallelization and acceleration. Faster processing would lower many research barriers (in terms of throughpu

    Off-axis quantitative phase imaging processing using CUDA: toward real-time applications

    Get PDF
    We demonstrate real time off-axis Quantitative Phase Imaging (QPI) using a phase reconstruction algorithm based on NVIDIA’s CUDA programming model. The phase unwrapping component is based on Goldstein’s algorithm. By mapping the process of extracting phase information and unwrapping to GPU, we are able to speed up the whole procedure by more than 18.8× with respect to CPU processing and ultimately achieve video rate for mega-pixel images. Our CUDA implementation also supports processing of multiple images simultaneously. This enables our imaging system to support high speed, high throughput, and real-time image acquisition and visualization

    GPGPU-based surface inspection from structured white light

    Full text link
    corecore