View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by CiteSeerX

Accelerating Phase Unwrapping and Affine
Transformations for Optical Quadrature Microscopy using
CUDA

Perhaad Mistry
Department of Electrical and
Computer Engineering
Northeastern University
Boston, MA, U.S.A
pmistry@ece.neu.edu

David Kaeli
Department of Electrical and
Computer Engineering
Northeastern University
Boston, MA, U.S.A
kaeli@ece.neu.edu

ABSTRACT

Optical Quadrature Microscopy (OQM) is a process which uses
phase data to capture information about the sample beidiesitu
OQM is part of an imaging framework developed by the Optical
Science Laboratory at Northeastern University. In oneiq@agr
application of interest, the framework is used to extracgehin-
formation from the image of an embryo to determine embrye via
bility.

Phase Unwrapping is the process of reconstructing the resep
shift (propagation delay) of a sample from the measuredpped”
representation which is betweenr and+x. Unwrapping can be
done using the MinimunL” Norm Phase Unwrap algorithm. Im-
ages are first preprocessed using an Affine Transform befiese t
are unwrapped. Both of these steps are time consuming and wou
benefit greatly from parallelization and acceleration. t&apro-
cessing would lower many research barriers (in terms ofidinput
and performance) present when using OQM.

In this paper we report on accelerating Phase Unwrappindimd
Transformations using NVIDIA's CUDA programming model. We
also run elementary noise removal on the GPU using NVIDIA's
CUBLAS (CUDA Basic Linear Algebra Subprograms) library. We
integrate GPU execution into a Matlab environment to sesshle
interface to the pre-existing image acquisition systemnBpping

the unwrap and noise removal to a GPU, and by also reducing the
amount of I/O overhead, we are able to accelerate the erdéo-

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Second Workshop on General-Purpose Computation on Graphic
Processing Units (GPGPU 2009\arch 8, 2009, Washington DC,
USA.

Copyright 2009 ACM ISBN 978-1-60558-517-8 ...$5.00.

Sherman Braganza
Department of Electrical and
Computer Engineering
Northeastern University
Boston, MA, U.S.A

sbraganz@ece.neu.edu

Miriam Leeser
Department of Electrical and
Computer Engineering
Northeastern University
Boston, MA, U.S.A
mel@ece.neu.edu

process by more than 7.3x. This enables our imaging frantewor
to perform high speed image acquisition and visualizattonear
real-time rates.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming; J.&[fe
and Medical Sciencek Biology and genetics

Keywords

GPGPU, Phase Unwrapping, Affine Transformation, CUDA, CBBI.
Optical Quadrature Microscopy, Biomedical Imaging, Matkx-
ternal Interface

1. INTRODUCTION

Optical microscopy plays a key role in a number of importarag-
ing applications. Optical Quadrature Microscopy (OQM)fpans

a phase unwrap to obtain the structure of objects beingedudi
Producing phase information in real time is a challengirapfam;
real-time phase unwrapping would allow researchers toalligu
inspect samples as they are being positioned on the migresco
and would greatly accelerate the rate of discovery in optita
croscopy.

Many microscopy applications are limited by latency assied

with viewing the specimen that is presently under the lener F
OQM, the CPU based version of the unwrap code takes more than
18 second to complete. Before unwrapping can be startedfae A
Transform is applied to the data, which adds an additionac3 s
onds to the process. In order to improve the performance tf bo
these data-parallel applications so that we can elimimetéatency

in generating a visual display for the quadrature microscape

map these applications to a GPU.

In prior work [15, 4], a range of phase unwrapping algorithwese
studied. A number of C-based CPU implementations described
in [4] were considered. These included tRath-Following and

https://core.ac.uk/display/24065925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Minimum Normfamilies of algorithms. The primary selection cri-
terion for picking an algorithm is the quality of the unwrag the
data available. The Minimum Norm family of algorithms proed
the smoothest solutions, but some variations like Prectiomgid
Conjugate Gradient (PCG) often experienced large erris he
Minimum L¥ Norm algorithm, which is also a member of the fam-
ily of the Minimum Norm algorithms, produced the best overal
solution (though at the expense of the greatest computtitice).
Since our criterion was to obtain the highest quality unwnap
elected to use the Minimurh” Norm algorithm.

It should be noted that the class of algorithms being consétifor
unwrapping are not unique to microscoscopy. These same tech
nigues can be used in applications such as synthetic apeedar
interferometry and adaptive optics, although the focushisf pa-

per is on medical imaging. All of these applications requfre
conversion of interferometry phase into propagation delay

Previous work done on applying GPUs for 2D unwraps includes
Karasev et al [8] who used GPUs to implement 2D phase unwrap-
ping on NVIDIA GPUs using CG (C for Graphics), achieving a 35x
speedup. They implemented a weighted least squares algorit
similar to the PCG algorithm shown in Section 3.3.1, andiegpl

it to Interferometric Synthetic Aperture Radar (IFSAR)alatheir
implementation used multigrid and Gauss-Seidel iterattorsolve

the minimization problem. However, multigrid techniques ribt
work on our datasets [2]. Mutigrid techniques have beenistiud
and they require a high number of iterations to converge en t
order of tens of thousands) [15]. In comparison, the PCG ar-Mi
imum LT Norm algorithm used in this work requires tens or hun-
dreds of iterations. Even though this prior work demonsttam-
pressive speedups, their total computation time is grehgar the
unwrapping times reported in this work.

The key contributions of this paper include:

A description of a Minimum E Norm Phase Unwrap algo-
rithm mapped to the NVIDIA GPU,

A description of an Affine Transform map to the NVIDIA
GPU,

A performance evaluation of these two algorithms run on a
CPU and a GPU and

A demonstration of the utility of Matlab’'s MEX Interface to
reduce the amount of disk activity.

The rest of the paper is organized as follows: In Section 2 we
describe the microscopy system and the steps involved iic&@pt
Quadrature Microscopy. We discuss the algorithms usedtas®
Unwrapping and the Affine Transform and explain how they fibin
the imaging framework in Section 3. In Section 4 we introduce

how general purpose processing can be carried out on GPUs. In

Sections 5 and 6 we describe how we implemented our algaithm
on the GPU. We present performance results in Section 7epires
future work in Section 8 and conclude the paper in Section 9.

2. OPTICAL QUADRATURE MICROSCOPY
In this section we describe the steps involved in OQM andiso
vide some background about the biomedical applicationetarh
for our GPU-accelerated phase unwrapping.

2.1 Usage of OQM

The main motivation for improving the performance of OQMslie
within its potential application in In Vitro FertilizatiofiVF). Present
imaging techniques used in IVF clinics are unable to procace
curate cell counts in developing embryos past the eightstage.
These cell counts are necessary in order to study the wiabifi
the embryo, as part of a program to understand fertility. Opé-
cal Science Lab at Northeastern University has developeethad
that has produced accurate cell counts in live mouse embayas
ing from 8 to 26 cells by combining two microscopy techniqubs
Differential Interference Contrast (DIC) and 2) Opticald@uature
Microscopy (OQM).

The Optical Quadrature Microscope (OQM) technique wastiice
patented [6]. OQM can image unstained transparent objsats),

as mammalian embryos, using very low, non-toxic, light lgeve
The contrast is in the index of refraction, which is differdor
culture media, cells, and intracellular components. OQIsinisn-
terferometric imaging modality that measures the ampditadd
phase of the signal beam that travels through the embryo. The
phase is transformed into an image of the optical path ledidfer-
ence, which is used to determine the area of maximum optatal p
length difference in a single cell.

The Optical Science Lab has developed an algorithm [16] tmtco
the number of cells in late-stage pre-implantation emhrybke
algorithm uses DIC microscopy for obtaining cell boundsiri€he
algorithm basically fits an ellipse to the boundary of a sncgll
using the DIC image and combines it with the optical path fleng
deviation of a single cell that is obtained from the OQM image
This creates an ellipsoidal model of the optical path lerdgti-
ation which is studied to produce the cell count and subsgtue
used to study IVF. Discontinuities are counted since theyptiethe
presence of a cell or a change of the medium. DIC is another mi-
croscopy technique which does not require much post-psougs
So DIC is not discussed further in this paper and our focusiis o
accelerating OQM.

2.2 OQM Setup

The OQM method is used in conjunction with other techniqaé$ [

for imaging live embryos. OQM uses a 632.8 nm laser within a
modified Mach-Zender Interferometer. Figure 1 presentsrtam
elements of the OQM setup used to acquire images of a sample
based on the optical path difference induced by the sample.

Fiber
From Beamsplitter

REFERENCE PATH

14 Wave
Linear Plate
c 2
S]GI.'J,AL Polarizer Recombining e
PATH Beamsplitter ¢

Camera 3

Condenser [Objective

S

Camera 0

4

« Polarizing
Beamsplitters

A

Camera 1

Sample

Figure 1: Organization of the Optical Quadrature Microstop

As shown in Figure 1, the laser beam is split into two compo-
nents calledeferenceandsignal The signal beam passes through
the sample. The reference beam is split, with one comporent b

four frame grabbers for alignment purposes,

2. A noise removal step is performed, and

ing phase shifted by 90 degrees. The signal beam is then mixed 3. phase unwrapping is performed to obtain the optical géth d

separately with both components of the known referenceakign
The merged signal that consists of the signal beam and naseph
shifted reference is called thehannel(thein-phase signg| The
unknown signal that is mixed with the 90 degree phase-shifté
erence signal is called th@ channel(the quadrature signal By
interpreting the | and Q signals as real and imaginary vatifies

complex number, we can find the amplitude and phase of the un-

known signal. Expressions for both the reference and theakig
beam are given by Equations 1 and 2.

Erep = Ex e(ijd’)(m + jy) Q)

Esig = E % e(jthr(bJra)(:c +v))

When acquiring images, we record images from four CCD cam-

eras simultaneously. The beam-splitters and the respeC®D
cameras in Figure 1 capture the following fields, which arera-c
bination of Equations 1 and 2.

Camera 0:|E,cf|* + |Esig|> + 2Re(Eyres.Esigx) (3)

Camera 1:|E,cf|® + |Esig|* + 2Im(Eres.Esigx) (4)
Camera 2:| Eref|® + | Esig|> — 2Re(Eres.Esigx) (5)
Camera 3:|E,cf|* + |Esig|> — 2Im(Eres.Esigx) (6)

As shown in Equations 3-6, and by inspecting the OQM diagram i
Figure 1, we can see that by blocking the signal and referame
individually and simultaneously, we are able to capturegesafor
the pure signal (S, reference (Rn, and detector dark voltage

(D_n. Equation 7 yields the complex number whose angle captures

the phase of the sample [16].

E, =

3
*Zin.Mn_Sn_Rn (7)
n=0

VR.

The phase information produced from equation 7 produceppe
phase-based images, with value at each pixel betweeand-+.

ference from the phase difference.

3.1 Affine Transformation

Phase Unwrapping converts phase data into path differerfice i
mation by looking at the phase difference between neighqix-
els. An Affine Transform [7] is used to compensate for imperfe
tions in the acquisition equipment. Since data presenteasdme
coordinates in images from two different cameras may nateeor
spond to the same location in the real sample, so an AffinesTran
formis applied directly afterimages are collected. If weew® use
images omitting this step, the phase gradients that we wamrit
pute in the unwrapping step would not correspond to neighor
pixels.

An Affine Transform involves operations including tranglat scal-
ing, rotation, skewing and reflection. As described [7], ttaas-
form can be expressed using matrix form:

MM

Equation 8 shows that an affine transformation can be dexteb
a matrix multiplication problem, where the location at whicdata
point is stored is decided by the result of a multiplicatiéthe old
coordinates of the point with a transformation matrix.

®)

The new coordinates of each pixel (X',y’) on the image canbe e
pressed in terms of the matrix in Equation 8 and the old coatds.

We use the values of the 2x2 matrix obtained from the OQM frame
grabbers. Only the final values of the 2x2 and 2x1 matrices are
available.

3.2 Noise Removal

After the Affine Transform is applied and the images from ther f
cameras are aligned on a 2D grid, noise removal is performed.
Noise removal is needed because of the presence of dark detec
tor voltages and the fixed-pattern levels of the individuaheras
which are caused by using non-ideal components. The dagk-det
tor voltage is removed by subtracting a dark image (imagelgd
without the laser) from the sample image. The noise intreduc
by nonideal components is removed on a per camera basisand re

This data needs to be unwrapped in order to be usable, since wequires subtraction af,, and R,,. The square root oR,, computed

are interested in propagation delay not the wrapped/ertenfietry
phase for the sample. Performing unwrapping with a C/Mattab
plementation of the Minimuni.” Norm phase unwrapping algo-
rithm takes nearly a minute to process a single frame. Acaele
ing this processing would render the OQM imaging modalitccmu
more useful in processing large stacks of images and praade
real-time performance to visualize unwrapped output froenrhi-
croscope.

3. ALGORITHMS USED IN OQM

As described above, since we cannot directly measure theepha
of an electrical field, we obtain the magnitude of differentiges
from the cameras. We process the magnitude values to obiain t
phase. The three main to obtain the optical path differenee a

1. An Affine Transform is run on the images obtained from the

in Equation 10 normalizes each component to ensure balanced
tensities for detection.

After computing Equation 10, we obtain images where the ghan
in phase is only due to the sample being imaged. The images fro
each camera (the camera number denoted ioyEquation 10) are
combined in Equation 10. This yields a complex number, and by
calculating the angle, we extract the phase of the samplé i§h
the wrapped phase that is then passed to the phase unwrap code

1 <~ Mo—S,—R
Ey=>xy 0 2n"2on" 10
TF i (10)

3.3 Phase Unwrapping

In an ideal situation, the phase of an unwrapped signal varieh
that the gradient between pixels is less than a half-cycle; @-
dians. If this is true, then a wrapped version of this imagy ba
unwrapped by simply summing (i.e. integrating in the cambims
domain) until a gradient of is reached at which point the phase
is added to an integer multiple 8fr and the summation continues.
This is the method for solving 1D phase-based data sets.

In 2 dimensions and if the data is noisy, phase gradientdegrea

thanr are created due to noise. These large phase gradients can

lead to image corruption over large segments of the data.n Eve
low levels of noise (i.e., below) lead to an accumulation of error
that eventually results in large deviations. Such erraasl I® the

The DCT algorithm selected uses a Discrete Fourier Tramsfor
(DFT) [9]. We utilize a GPU based FFT library called CUFFT pro
vided by NVIDIA [12]. Pseudocode for the preconditioningst
(which is part of a conjugate gradient method) is shown incAlg
rithm 1.

Algorithm 1 Preconditioned Conjugate Gradient

for k «— 0 To Max lterations-1do
Apply Preconditioning
Do Conjugate Gradient Steps
Check For Convergence between Old and New Values
if Convergencé¢hen
Exit Loop
end if

presence of residues. A residue is defined as a point where the end for

integral over a closed four pixel loop is not zero.

As mentioned earlier, we use the Minimub® Norm Algorithm
for the unwrapping. This algorithm seeks to generate a isolut
whose local phase gradients match the original wrappecdepiras
dients as closely as possible. In order to describe the Mimih”?
Norm algorithm, we first neeed to discuss the conjugate gradi
method, as well as the preconditioning that is applied toirtie
age, since these two elements constitute the core computati
the Minimum L? Norm algorithm.

3.3.1 Preconditioned Conjugate Gradient
The Preconditioned Conjugate Gradient algorithm generid¢e-
ations of theunweighted least squares algorithm in order to per-

3.3.2 Minimumz? Norm Phase Unwrapping Algo-

rithm

The Minimum L? Norm algorithm minimizes the number of dis-
continuities in the unwrapped solution without concerrtifi@ermag-
nitude of these discontinuities [4]. The Minimuf? Norm algo-
rithm can be used with or without user-supplied weights desiote
the importance or quality of a pixel. The Minimufi¥ Norm Al-
gorithm iteratively runs the PCG algorithm, which in turdisghe
DCT code.

The Minimum L? Norm is similar to the PCG method since it
also aims to minimize the difference between the gradiehtbeo
measured and calculated phases. The quality of an unwrap can

form a weighted phase unwrap. The unweighted least squares be measured in terms of the number of residues in the image. A

algorithm minimizes the difference between the gradiefitthe
wrapped phase data and the gradients of the unwrapped phase
dataA. Our goal is to obtain theé; ; that minimizes Equation 11.

M—-2N-2
€= (i1 — iy — AF)? (11)
i=0 j—0
M—-2N-2
+ (Bi5+1 — dig — AY)?
i=0 j=0

whereg;+1,; — ¢i,; is the phase difference in the x direction be-
tween the point$: + 1, j) and (s, j) of the unwrapped phase and
A7 ; represents the phase difference in the x direction in theped
phase. The reduced expression can rewritten and disctetsing
the Poisson equation given by:

(Pir1,5—2¢i+bi—1,5)+(Pijr1—20i j+bij—1) = pij, (12)
where

pij = (AT; — Ai1;) + (A7, =AY,) (13)

residue is defined as a point where the integral over a claned f
pixel loop is not zero. PCG seis= 2 or uses the least squares
norm(Equation 11) whereas the Minimut#i Norm algorithm uses

p = 0 as seen in Equation 14. The valuezot= 0 generally pro-
duces the best solution [4] This means that the MininfitiNorm
algorithm minimizes the number of points where gradientthef
wrapped phase differ from the unwrapped phase whereas tBe PC
algorithm minimizes the square of the differences. Equafid
represents a weighted phase unwrap problem where the asdfric
and V' represent automatically generated data-dependent weight
that indicate the quality of the phase data at particulagldboca-
tions.

(Pit1.5 — Gi3)Uig + (Sij1 — bij)Vij —

(fij — i-1,5)Ui-15 — (bij — dij-1)Ui i1

= c(1,7)

HereU andV are data-dependent weights and the weighted
phase Laplacian given by

+AL V() — A V(= 1)

i,j—1

(14)

(15)

This equation can be rewritten as a matrix equation, as shiown

Equation 12 solves the unweighted problem and is used to pre- Equation 16.

condition the image matrix prior to running the conjugatadir
ent method. Preconditioning gives the matrix a better dammdi
number allowing it to converge rapidly. Equation 12 is sdlve
the frequency domain using a 2D Discete Cosine TransfornT{DC
and Inverse Discrete Cosine Transform.

Q= c, (16)

This equation takes the same form as the PCG equation, and so
can be solved using the same methodology as presented in Sec-
tion 3.3.1. The Algorithm for the Minimuni” Norm is described

in Algorithm 2.

Algorithm 2 Minimum L? Norm Phase Unwrapping Pseudocode

for k — 0 To Max Iterationdo
Compute Residual R
Exit it No Residues
Compute data dependent weights U and V
Compute weighted phase Laplacian ¢
Call PCG (Algorithm 1)
end for
if No Residues Lefthen
Unwrap using any simple algorithm like Goldstein
else
Do Post Processing or Error Out
end if

4. CUDA INFORMATION

We provide an overview of NVIDIA's Compute Unified Device Ar-
chitecture model (CUDA) [13] in order to justify the use of G

in our application. We use the NVIDIA 8800GTX GPU which sup-
ports the CUDA programming model. The microarchitecturthef

system is as shown in Figure 2. The G80 GPU consists of a large

number of streaming multiprocessors (SMs) - 16 for the 8800G
version- which access a global memory. The GRWfEied archi-

tectureand the low-latency shared memory, make it possible to run

non-graphics programs easily, thus harnessing the GPé&fiseim-
dous computing power for data parallel applications.

The typical model for utilizing a GPU is to treat it as a co-q@ssor.
The application developer then has to re-write his/hent&ecode”
in order to execute on the GPU The host processor transfeus in

data to the GPU memory before executing the kernel and sends

the output data back after the kernel completes executidms T
programming model provides asynchronous concurrent kexie

ecution where control returns to the calling program as sa®n
the kernel is called. The hardware specifications of the NXID
8800GTX used in this work are provided in Table 1.

NVIDIA
GeForce 8800GTX
Multi Processors 16
Scalar Processorg 128
Shader Engine Cloc} 1500 MHz
Memory Clock 1080 MHz
Memory Interface 384 bhits
Memory Bandwidth 103.7 GB/s
Peak Performance 320GFLOPS

Table 1: Hardware specifications of NVIDIA 8800 GTX.

The specifications of the host system is presented belowtle 2a

Programming Model: CUDA follows a data parallel program-
ming model where each thread works with its own data. In caler
specify the number of threads we must provideegecution config-
urationto CUDA. The execution configuration specifies the “grid”
which consists of a number of threads divided into equathedi
blocks. CUDA allows a programmer to index each thread in the
grid viathread idandblock id which are accessible via keywords

t hr eadl dx andbl ockl dx.

CUDA provides two levels of data parallelism: 1) fine-graimata

Component Value
Processor Core 2 Duo (Penryn
L1 Data Cache 2x32kb
L2 Cache 6MB
Frequency 3Ghz
Number of Cores 2
RAM 4GB DDR2
Front Side Bus 4X 333M

Table 2: Host system configuration.

Figure 2: CUDA Hardware Model

parallelism due to multiple threads within a block that ascthe
low-latency local shared memory and execute independeR}ly
coarser-grained parallelism (i.e., thread parallelisha} is avail-
able in the different blocks of threads that can be executedife
ferent SM's and can access the larger global memory (thouth w
more latency). The programmer must first partition the pobl
into subproblems which can be solved cooperatively thralgined
memory for maximum performance.

The CUDA programming model is commonly describedséd T
(single instruction multiple thread) [13]. Each thread iapped to

a single scalar processor core of the SM. Each thread is@bhest

cute independently (i.e., with its own instruction addrasd regis-

ter state)Varpsare defined as a group of 32 threads that are created,
managed, and scheduled by the SIMT unit with little overh&ad

an application programmer, CUDA programming consists tfex
sions to ANSI C where the GPU is treated as a co-processor. The
NVIDIA NVCC compiler seperates the code to run on the GPU or
the CPU, though it is guided by simple C-like constructs ftes

by the programmer.

We take advantage of these properties of the GPU in our applic
tion since the Affine Transforms and noise removal both ata da
parallel applications with the same operation is done oh pael.

For these applications we define a grid to be the size of thgema
and process different parts of the image in different pakraliocks

on the multiple SMs on the GPU. Phase unwrapping also ingolve
some element-wise operations including complex multgtian.

5. CUDA IMPLEMENTATION

In this section we explain how we implement the algorithms de
scribed in Section 3 in the OQM process on the GPU.

5.1 Affine Transformation

The Affine Transform described in Equation 8 is used to align t
images obtained from the different cameras (see Figure haive
implementation of an affine transform on a GPU is rather gittai
forward to code. As seen in the snippet shown in Algorithm &, w
compute one pixel using one thread. An important featurdisf t
kernel lies in the method used to obtain the (x,y) coordméte
each pixel from each thread’s block id and thread id. Thisoera
the need for moving a precomputed coordinate system gnid fine@

CPU to the GPU. Using the thread numb@{OCKID)(BLOCKSIZE)+ 1|

Threadl D) we get the (x,y) coordinates of a pixel which we mul-
tiply with the 2*2 Matrix to get the new coordinates.

Algorithm 3 Affine Transformation CUDA kernel pseudocode

Below Code Represents Contents of One Kernel
x «f(Blockidx.x, Threadidx.x)

y «—f(Blockidx.x, Threadidx.x)

PixelValue —Image(x,y)

z' —ax+by+a

Y —Cx+dy+3

As Per Equation 8

Image(x',y’) —PixelValue

Scatter & Gather Operations: In the psueudocode for Affine
Transform (Algorithm 3) we see that the location of the regil
decided by the value of the Affine calculations. This operati

to memory accesses) in a kernel containing just a few subtrac
tions, a naive implementation is not a good candidate sire@-m
ory latency cannot be hidden easily. Instead we use the égh p
formance library for CUDA called CUBLAS. This is an imple-
mentation of the Basic Linear Algebra Subprograms (BLAS) li
brary that takes advantage of the data parallel hardwaréhen t
NVIDIA GPU. The performance difference between subtractio
with BLAS and a naive kernel is shown in Figure 3, where we do a
simple Saxpy operatioX «— X + «a*Y using the BLAS function
SAXPY (z,y,«) and compare it with a naive kernel. We imple-
mented the subtraction expressions of equation 10 using af se
SAXPY calls by settingy = —1.

CUBLAS Saxpy v/s Naive Saxpy Implementation

GFLOPS
N
3

0 100 200 300 400
Square Matrix Size

CUBLAS Saxpy ——

800

Naive Saxpy--—-----

Figure 3:
SAXPY.

Comparing CUBLAS and naive implementations of

As seen in Figure 3, the usage of optimized BLAS is justified fo
noise removal, and the fact that data is already availablee@GPU
and the resultant data will be needed for phase unwrappirtgeon
GPU, makes it worthwhile to use the GPU for an Affine Transform
even for the unoptimized scatter algorithm.

5.3 Phase Unwrap GPU Implementation
Our GPU implementation uses a combination of NVIDIA supglie

does not allow us to coalesce the memory accesses since-the agjpraries and some custom kernels to implement the pretionet

cess patterns are not known apriori. This is a common datd-par
lel access problem called “scatter”. Scatter operatiorievdata
to arbitrary locations and “gather” operations read datenfiar-
bitrary locations. These operations are highly memorynisite.

and the conjugate gradient calculation, along with kerapécific
to the Minimum L* Norm calculation. Both the.” Norm and
PCG algorithm kernels were implemented on the GPU. This-elim
inates much of the data transfer between successive iesatis

This problem has been studied in the past on GPUs [5] We have Compared to imp|ementing 0n|y the preconditioner_

observed this problem in our own application, but have noape
plied the methods shown in [5]. The method described [5] & de
with the memory bandwidth bottleneck implements a mulsspa
methodology for scatters to improve data locality and iaseecoa-
lescing possibilities. The benefits of a multi-pass techeifp] are
noticeable for data sets that are greater than 10MB in sizéndie
matrix operated on by our kernel is oréy0 « 480 « 4 = 1.2M B.
For this reason even while using a naive Affine Transform énpl
mentation, we achieve reasonable speedup since each fheead
forms a scatter for a single element, and this is only done émc
each kernel execution.

5.2 Noise Removal

As discussed in Section 3.2, noise removal is done by using-Eq
tions 9 and 10. Writing kernels that perform point-wise sabt
tion would be trivial. However, due to the presence of vemy-lo
arithmetic intensity (i.e., the ratio of the amount of corngion

As shown in Algorithm 4, it became necessary to also implémen
kernels that performed the two-dimensional shuffle and dexnp
multiplication in order to convert between the FFT and theTDC
We see that the FFT calculation is the most time-consumingppa
the DCT computation, followed by the shuffle.

5.3.1 Preconditioner Implementation

The preconditioner uses a 2D DCT/iDCT and some floating point
computation in order to transform the input matrix into anfidhat
converges rapidly when the conjugate gradient method id tse
solve the equations presented in Section 3.3.1. The digouised

for the DCT [9] focuses on the reuse of an existing 2D FFT. In
our case, we use the CUFFT library provided by NVIDIA for im-
plementing a DFT on a GPU [12]. CUFFT provides a complex
Fourier transform that leverages the parallelism avedlall GPUs

to rapidly compute 1D, 2D or 3D transforms. It is similar teth

Algorithm 4 The Minimum L” Norm algorithm pseudocode.

for k < 0 To Max Iterationsdo
Calculate Derived Weights
Calling PCG Method
for j « 0 To PCG lteration Countlo
//Started Preconditioning Steps shown below
DCT To DFT Steps (Shuffle Kernel)
Execute CUFFT Call to do DCT
Point-Wise Complex Multiplication to Get DCT Result
Scaling Step
Execute CUFFT Call to do iDCT
/[Finished Preconditioning Steps
Conjugate Gradient Steps as in Algorithm 1
end for
end for
if No Residues Remaiten
RasterUnwrap()
end if

popular FFTW library [3] since it uses a plan based approach t
setting up and executing FFTs.

The first step of the 2D DCT is a two-dimensional shuffle. This
shuffle reorders the input matrix in four different ways dwegiag

on the location of the individual data point. This procedisraot
compute bound and is only limited by the performance of thexme
ory bus and the efficiency of scatter/gather operations. cbime-
plex multiply step represents a straightforward kernd ihaasily
parallelized since each matrix value can be operated uptapen-
dently. This was implemented in CUDA using a thread-peebix
model which assigns a thread to each matrix data point.

5.3.2 Point-Wise Multiplication

There are several point-wise matrix multiplications/diddis and
matrix accumulates. Point-wise functions parallelizeexiely well
since there are no dependencies between data points. Tenmapt
these functions, a similar method to the complex multipitcawas
used.

5.3.3 Reduction Kernels

An accumulation kernel was needed in order to compute the ave
age magnitude of the elements. This was more complicated tha
expected since there are dependencies between elemeartarinh
in accumulation and so it cannot be parallelized to the sageee.

In stream processing terminology, this operation is calledduc-
tion since the number of threads goes fro for a N xN matrix

to 1. This operation was frequently used and so it was negessa
optimize it further. A number of standard techniques [1(,\idre
used including conflict-free sequential addressing, makthread
utilization and to completely unroll loops.

6. SYSTEMINTEGRATION AND AUTOMA-
TION

Previously, in OQM the image acquisition process involved-r
ning the Affine Transform and also noise removal. These epera
tions were done in Matlab. After the noise removal was coteple
the data would be saved on the disk and the C-based implementa
tion of the Phase Unwrap would be launched. Typically, ther us
would not use the saved data again. This would lead to unneces
sary disk activity since data would need to be written by tifftna
Transformation and noise removal steps and then again oe#ukf
Phase Unwrap.

Frame-Grabber
Image Acquisition
ToolBox

MMATLAB Legacy

Interfaces

MATLAE Legacy
Interfaces

Fhase Unwrappmng
Wrapper () usmg

MEX

Affmne Transform
Wrapper () Usmg

MEX

i

Aftme Transform
& Nose Removal
GPU Code
(CUDAY

e

Phase Tnw rapping

GPIT Code (CTDA)

Figure 4: The flow of the GPU processing in OQM System.

To accommodate working with Matlab, we use the NVMex script
provided by NVIDIA [11] that allows us to compile CUDA code
and make it callable from within Matlab. We utilize Matlalgster-

nal Interface (MEX) [1] which can be used to generate dynaltyic
linked subroutines from C code. NVmex is a script from NVIDIA
that uses MEX and NVCC in order to make it possible to call
CUDA code from Matlab in a manner similar to regular C code.

6.1 Usage of MEX Files

The only extra overhead associated with using MEX files isito i
clude a simple gateway function that contains functiorsaadleded

to make arrays within Matlab (i.e., mxArrays) accessibleotw
wrapper. This allows us to send data generated by Matlabeto th
GPU by simply using pointer passing.

To use MEX files, we wrote wrappers for the GPU-based code.
The wrapper contains a function call to the code that comoates

with the GPU. Our code for unwrapping or affine transforms did
not need to be changed. The flow of the system is as shown in
Figure 4. Once the image is acquired by the frame-grabbets an
we move into the MEX wrapper, all disk 10 associated with sgvi
state is eliminated and there is no need to return to Matlab.

6.2 Image Examples
Next, we provide examples using typical image data sets &d d

The OQM framework has a very heterogeneous structure in the cuss how they are used. The camera frame-grabbers capéure th

sense that we have different systems that collaborate te sol
problem. Four Matrox frame grabbers are used for obtairtieg t

magnitude of all four different kinds of images. The imageswen
here are of a mouse embryo with four cells. The four types ef im

images. Matlab and the Image Acquisition Toolbox are used to ages (mixed, signal only, reference only and dark) are shiawn

convert the image into a numerical matrix and provides a é-am

Figures 5to 8 and are obtained for each camera by manipglatin

work to view and save resultant images.The GPU code needed tothe shutters. This equals a total of 16 images (4 types ofés\ay

be integrated into this environment.

cameras). We show only a single set of images from one camera.

These images undergo the Affine Transform (Section 3.1) arid d
subtraction (Section 3.2) on the GPU. The signal and referem-
ages in Figures 6 and 7 are subtracted as per equation 10 @nd co
bining the images from all four cameras we obtain the a maffrix
complex numbers. The angle of this complex number yields the
wrapped phase betweenr and+, as shown in Figure 9.

Fowr ol Entey - bt i

Figure 5: Mixed Image Figure 6: Signal Image

50 4 g e e o Lo i b

Figure 7: Reference Image Figure 8: Dark Image

As seen, the image in Figure 9 has transitions and discatiéau
around the edges of the sample (i.e., the changes in colan@ro
the border between the sample and the media). It is not easy to
discern details of the sample due to the multiple small itioms
inside the sample. However, after completing the unwrapcave

see in Figure 10 the color transition from the culture medithe
middle of the sample is very smooth and even an untrainedaye c
see difference in the level of detail in the embryo. Itislfa@grasy to
count the 4 cells seen in the embryo in Figure 10. This finagiena

is the motivation and output of this research.

7. PERFORMANCE & RESULTS

Next, we discuss the performance of our accelerated agiplican

the GPU.Due to the complexity and heterogeneous naturerof ou
application, the speedup and performance of our systemoiedu
not only for our GPU-based kernels, but for the completeesyst
which includes the time spent in Matlab wrappers and the ldisk

7.1 Phase Unwrap Only
The frame grabbers used in the Optical Science Lab acquagem
at a resolution of 640*480. To produce a reasonable baseliee

Foun ol ey - B g

Figure 9: Wrapped Phase Image

Frur £l By b sty

Figure 10: Unwrapped Image

use a mature C-based implementation of phase unwrap dedcrib
in [4]. The implementation provided [2] used the FFTW liyr§3]
which is a highly-tuned library for implementing an FFT onegi+
ular CPU. In the phase unwrapping problem, due to the contplex
and heterogeneous nature of the system, we analyze the arésn p
of the algorithm and look at the individual speedups rathant
cumulative performance numbers.

Execution time is reduced from an average of 15 seconds #or th
software FFTW based version to 2.8 seconds on the GPU. This in
cludes the time to run the preconditioner and perform théucate
gradient calculations. These numbers were generated ftasa g
bead dataset and represent 200 iterations of the PCG kérhel.
glass bead in ail is an excellent benchmark to use since dynes

a very large number of residues and is usually very hard taamw

More detailed runtimes are provided in Table 7.1. The MEXYGP

column uses the same implementation as the GPU. However the

code is called from within Matlab as discussed in Section é.d¢&/
not quote a speedup number for the MEX+GPU IO activity since
the only 10 related activity is simple pointer passing.

mized scatter operation described in Algorithm 3) compleéte
Affine Transform processing and the BLAS calls for noise reaho
in 0.2seconds, thus yielding a 6.25X speedup

8. FUTURE WORK

Future work on this framework includes adding support fottmu

ple GPUs which would allow us to also implement a coarsemgrai
of parallelism (e.g., running multiple unwrap algorithmsyuch
work would be useful for high throughput imaging and broaden
the scope of OQM to new domains where we may need to acquire
multiple images in less time than it takes to process a sintgge.

We can also explore using cudastreams, which would allovo us t
overlap execution and computation. The code of the Affine@3+a
form and the Phase Unwrap are both good targets for furthier op
mization and we can improve their performance even moresuRur
ing better methods to implement scatter/gather would adsloetip-

ful since they are used in both affines and preconditioning.

9. CONCLUSION

We have implemented the Minimu®” Norm Phase Unwrap al-

Figure 11 shows a breakdown of the percentage of time taken by gorithm on CUDA. In addition we implemented parallelizeda!

each component of the unwrapping code. An important detail t
be noted is that the “lO Activity” term in Table 7.1 defines “IO

Activity“ as memory accesses done when reading and writieg t

phase data. In both the baseline and the GPU implementai®n i

the same value since both read and write the same data taStisk.
the percentage of time spent on /O activity increases inreid 1

rithms for Affine Transform and noise removal on a GPU. We ob-
tain a speedup of 7.3X for the entire system by acceleratihgmy
GPU code, but by also reducing the overhead associatedmnth i
facing with Matlab by reducing some disk activity. Our apgrbed
does not change the image acquisition methodology. Usingld, G
we are closer to our goal of real-time OQM imaging. We plan to

as can bee seen in Table 7.1 for the GPU case. The resultsfor th pursue using multiple GPUs in future work.

MEX+GPU case in Table 7.1 indicate that we are not bound by
disk activity. Only .02 seconds is spent in the MEX wrapper to
process data visible from within MATLAB and pass the poistier

the CUDA code.

% Distribution of each component of unwrapping
80
70 -
60
50 |-
40 -
30
20
10 ¢

Percentage of Time Taken

GPU GPU with MEX

Implementation Type

1/0 Activity
Miscellaneou s me—m—e:

CPU

PreconditionC——
Conj. Grad.zz ;

Figure 11: Time taken by each component for C implementation
and GPU implementation.

7.2 Affine Transforms

Run time of the Affine Transform algorithm, unlike the Phage U
wrap algorithm, remains the same irrespective of the typaatd
used. In this case the baseline performance was the Matlab im
plementation of an Affine Transform. The Affine Transform was
called after the Image Acquisition Toolbox’s getdata()dtion is

run. The baseline time taken by a Matlab implementation was
1.25 seconds. The GPU implementation (even using the unopti

10. ACKNOWLEDGMENTS

We would like to acknowledge the assistance of the membeheof
Optical Science Laboratory at Northeastern Universityis Tiork
was supported in part by CenSSIS, the Center for Subsurfete S
ing and Imaging Systems, under the Engineering ReseardeGen
Program of the NSF (Award Number EEC-9986821), by the Insti-
tute of Complex Scientific Software at Northeastern Unitgrby
The MathWorks, and by equipment donations from NVIDIA.

11. REFERENCES

[1] MATLAB External Interface Guide, 2007.

[2] C. Smith. Phase Unwrapping Algorithms, Master’s Prgjec
Northeastern University, 2004.
Frigo, M. and Johnson, S.G. The Design and Implemematio
of FFTW3.Proceedings of the IEE®3(2):216-231, Feb.
2005.
D. Ghiglia and M. Pritt Two-dimensional phase unwrapping:
theory, algorithms, and softwarViley New York:, 1998.
B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient
gather and scatter operations on graphics processoB€ In
'07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputingpages 1-12, New York, NY, USA, 2007.
ACM.
D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J.
Devaney, and S. C. Lindberg. Three-dimensional images
generated by quadrature interferome@t. Lett,
23(10):783-785, 1998.
[7] A. K. Jain.Fundamentals of digital image processing
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.
P. Karasev, D. Campbell, and M. Richards. Obtaining a 35x
Speedup in 2D Phase Unwrapping Using Commodity

(3]

(4]

(5]

(6]

(8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

Table 3: CUDA Implementation versus CPU based C Implemiantgétising FFTW)

Baseline GPU GSpeedupdUg MEX & GPU | MEX & GPU Speedup
Time(sec)| Time(sec) Time(sec)
Preconditioning| 11.17 1.2 9.3X 1.2 9.3X
Conjugate Grad 2.89 0.55 5.25X 0.55 5.25X
10 Activity 0.7 0.7 1X 0.02 NA
Miscellaneous 0.79 0.51 1.53X 0.41 1.92X
Total 15.55 2.97 5.24X 2.16 7.20X

Graphics ProcessorRadar Conference, 2007 IEERages
574-578, April 2007.

J. Makhoul. A fast cosine transform in one and two
dimensionslEEE Transactions on Acoustics, Speech and
Signal Processing?28(1):27-34, Feb 1980.

Mark Harris. Optimizing Parallel Reduction in CUDA.
http://developer.download.nvidia.com/compute/cuda/l
_1/Website/projects/reduction/doc/reduction.pdf,tLas
accessed December 2008.

NVIDIA. Accelerating MathWorks MATLAB with CUDA
2007.

NVIDIA. CUFFT Library, 2007.

NVIDIA. NVIDIA CUDA Programming Guide 2.@008.

S. Ryoo, C. |. Rodrigues, S. S. Baghsorkhi, S. S. Ston®&.D
Kirk, and W. mei W. Hwu. Optimization principles and
application performance evaluation of a multithreaded gpu
using cuda. IlPPoPP '08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming pages 73-82, New York, NY, USA, 2008.
ACM.

Sherman Bragranza. Master’s Thesis, 2008. Northeaste
University,
http://www.ece.neu.edu/groups/rcl/publications.html

W. C. Warger, Il, J. A. Newmark, C. Chang, D. H. Brooks,
C. M. Warner, and C. A. DiMarzio. Combining optical
quadrature and differential interference contrast tdifaté
embryonic cell counting with fluorescence imaging for
confirmation. In D. V. Nicolau, J. Enderlein, R. C. Leif, D. L.
Farkas, and R. Raghavachari, edit@sciety of
Photo-Optical Instrumentation Engineers (SPIE) Confeeen
Series volume 5699 ofSociety of Photo-Optical
Instrumentation Engineers (SPIE) Conference Sepages
334-341, Mar. 2005.

