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ABSTRACT
Optical Quadrature Microscopy (OQM) is a process which uses
phase data to capture information about the sample being studied.
OQM is part of an imaging framework developed by the Optical
Science Laboratory at Northeastern University. In one particular
application of interest, the framework is used to extract phase in-
formation from the image of an embryo to determine embryo via-
bility.

Phase Unwrapping is the process of reconstructing the real phase
shift (propagation delay) of a sample from the measured “wrapped“
representation which is between−π and+π. Unwrapping can be
done using the MinimumLP Norm Phase Unwrap algorithm. Im-
ages are first preprocessed using an Affine Transform before they
are unwrapped. Both of these steps are time consuming and would
benefit greatly from parallelization and acceleration. Faster pro-
cessing would lower many research barriers (in terms of throughput
and performance) present when using OQM.

In this paper we report on accelerating Phase Unwrapping andAffine
Transformations using NVIDIA’s CUDA programming model. We
also run elementary noise removal on the GPU using NVIDIA’s
CUBLAS (CUDA Basic Linear Algebra Subprograms) library. We
integrate GPU execution into a Matlab environment to seamlessly
interface to the pre-existing image acquisition system. Bymapping
the unwrap and noise removal to a GPU, and by also reducing the
amount of I/O overhead, we are able to accelerate the end-to-end
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process by more than 7.3x. This enables our imaging framework
to perform high speed image acquisition and visualization at near
real-time rates.
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and Medical Sciences]: Biology and genetics
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1. INTRODUCTION
Optical microscopy plays a key role in a number of important imag-
ing applications. Optical Quadrature Microscopy (OQM) performs
a phase unwrap to obtain the structure of objects being studied.
Producing phase information in real time is a challenging problem;
real-time phase unwrapping would allow researchers to visually
inspect samples as they are being positioned on the microscope,
and would greatly accelerate the rate of discovery in optical mi-
croscopy.

Many microscopy applications are limited by latency associated
with viewing the specimen that is presently under the lens. For
OQM, the CPU based version of the unwrap code takes more than
18 second to complete. Before unwrapping can be started, an Affine
Transform is applied to the data, which adds an additional 3 sec-
onds to the process. In order to improve the performance of both
these data-parallel applications so that we can eliminate the latency
in generating a visual display for the quadrature microscope, we
map these applications to a GPU.

In prior work [15, 4], a range of phase unwrapping algorithmswere
studied. A number of C-based CPU implementations described
in [4] were considered. These included thePath-Followingand
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Minimum Normfamilies of algorithms. The primary selection cri-
terion for picking an algorithm is the quality of the unwrap for the
data available. The Minimum Norm family of algorithms produced
the smoothest solutions, but some variations like Preconditioned
Conjugate Gradient (PCG) often experienced large errors [15]. The
Minimum LP Norm algorithm, which is also a member of the fam-
ily of the Minimum Norm algorithms, produced the best overall
solution (though at the expense of the greatest computationtime).
Since our criterion was to obtain the highest quality unwrap, we
elected to use the MinimumLP Norm algorithm.

It should be noted that the class of algorithms being considered for
unwrapping are not unique to microscoscopy. These same tech-
niques can be used in applications such as synthetic aperture radar
interferometry and adaptive optics, although the focus of this pa-
per is on medical imaging. All of these applications requirethe
conversion of interferometry phase into propagation delay.

Previous work done on applying GPUs for 2D unwraps includes
Karasev et al [8] who used GPUs to implement 2D phase unwrap-
ping on NVIDIA GPUs using CG (C for Graphics), achieving a 35x
speedup. They implemented a weighted least squares algorithm,
similar to the PCG algorithm shown in Section 3.3.1, and applied
it to Interferometric Synthetic Aperture Radar (IFSAR) data. Their
implementation used multigrid and Gauss-Seidel iterations to solve
the minimization problem. However, multigrid techniques do not
work on our datasets [2]. Mutigrid techniques have been studied
and they require a high number of iterations to converge (on the
order of tens of thousands) [15]. In comparison, the PCG or Min-
imum LP Norm algorithm used in this work requires tens or hun-
dreds of iterations. Even though this prior work demonstrated im-
pressive speedups, their total computation time is greaterthan the
unwrapping times reported in this work.

The key contributions of this paper include:

• A description of a Minimum Lp Norm Phase Unwrap algo-
rithm mapped to the NVIDIA GPU,

• A description of an Affine Transform map to the NVIDIA
GPU,

• A performance evaluation of these two algorithms run on a
CPU and a GPU and

• A demonstration of the utility of Matlab’s MEX Interface to
reduce the amount of disk activity.

The rest of the paper is organized as follows: In Section 2 we
describe the microscopy system and the steps involved in Optical
Quadrature Microscopy. We discuss the algorithms used for Phase
Unwrapping and the Affine Transform and explain how they fit into
the imaging framework in Section 3. In Section 4 we introduce
how general purpose processing can be carried out on GPUs. In
Sections 5 and 6 we describe how we implemented our algorithms
on the GPU. We present performance results in Section 7, present
future work in Section 8 and conclude the paper in Section 9.

2. OPTICAL QUADRATURE MICROSCOPY
In this section we describe the steps involved in OQM and alsopro-
vide some background about the biomedical application targeted
for our GPU-accelerated phase unwrapping.

2.1 Usage of OQM
The main motivation for improving the performance of OQM lies
within its potential application in In Vitro Fertilization(IVF). Present
imaging techniques used in IVF clinics are unable to produceac-
curate cell counts in developing embryos past the eight cellstage.
These cell counts are necessary in order to study the viability of
the embryo, as part of a program to understand fertility. TheOpti-
cal Science Lab at Northeastern University has developed a method
that has produced accurate cell counts in live mouse embryosrang-
ing from 8 to 26 cells by combining two microscopy techniques: 1)
Differential Interference Contrast (DIC) and 2) Optical Quadrature
Microscopy (OQM).

The Optical Quadrature Microscope (OQM) technique was recently
patented [6]. OQM can image unstained transparent objects,such
as mammalian embryos, using very low, non-toxic, light levels.
The contrast is in the index of refraction, which is different for
culture media, cells, and intracellular components. OQM isan in-
terferometric imaging modality that measures the amplitude and
phase of the signal beam that travels through the embryo. The
phase is transformed into an image of the optical path lengthdiffer-
ence, which is used to determine the area of maximum optical path
length difference in a single cell.

The Optical Science Lab has developed an algorithm [16] to count
the number of cells in late-stage pre-implantation embryos. The
algorithm uses DIC microscopy for obtaining cell boundaries. The
algorithm basically fits an ellipse to the boundary of a single cell
using the DIC image and combines it with the optical path length
deviation of a single cell that is obtained from the OQM image.
This creates an ellipsoidal model of the optical path lengthdevi-
ation which is studied to produce the cell count and subsequently
used to study IVF. Discontinuities are counted since they denote the
presence of a cell or a change of the medium. DIC is another mi-
croscopy technique which does not require much post-processing.
So DIC is not discussed further in this paper and our focus is on
accelerating OQM.

2.2 OQM Setup
The OQM method is used in conjunction with other techniques [16]
for imaging live embryos. OQM uses a 632.8 nm laser within a
modified Mach-Zender Interferometer. Figure 1 presents themain
elements of the OQM setup used to acquire images of a sample
based on the optical path difference induced by the sample.

Figure 1: Organization of the Optical Quadrature Microscope.



As shown in Figure 1, the laser beam is split into two compo-
nents calledreferenceandsignal. The signal beam passes through
the sample. The reference beam is split, with one component be-
ing phase shifted by 90 degrees. The signal beam is then mixed
separately with both components of the known reference signal.
The merged signal that consists of the signal beam and non-phase
shifted reference is called theI channel(the in-phase signal), The
unknown signal that is mixed with the 90 degree phase-shifted ref-
erence signal is called theQ channel(the quadrature signal. By
interpreting the I and Q signals as real and imaginary valuesof a
complex number, we can find the amplitude and phase of the un-
known signal. Expressions for both the reference and the signal
beam are given by Equations 1 and 2.

Eref = E ∗ e
(jwt+φ)(x + jy) (1)

Esig = E ∗ e
(jwt+φ+α)(x + y) (2)

When acquiring images, we record images from four CCD cam-
eras simultaneously. The beam-splitters and the respective CCD
cameras in Figure 1 capture the following fields, which are a com-
bination of Equations 1 and 2.

Camera 0:|Eref |2 + |Esig |2 + 2Re(Eref .Esig∗) (3)

Camera 1:|Eref |2 + |Esig|2 + 2Im(Eref .Esig∗) (4)

Camera 2:|Eref |2 + |Esig |2 − 2Re(Eref .Esig∗) (5)

Camera 3:|Eref |2 + |Esig|2 − 2Im(Eref .Esig∗) (6)

As shown in Equations 3-6, and by inspecting the OQM diagram in
Figure 1, we can see that by blocking the signal and referencearms
individually and simultaneously, we are able to capture images for
the pure signal (S_n, reference (R_n, and detector dark voltage
(D_n. Equation 7 yields the complex number whose angle captures
the phase of the sample [16].

Er =
1

4
∗

3
X

n=0

i
n
.
Mn − Sn −Rn√

Rn

(7)

The phase information produced from equation 7 produces wrapped
phase-based images, with value at each pixel between−π and+π.
This data needs to be unwrapped in order to be usable, since we
are interested in propagation delay not the wrapped/interferometry
phase for the sample. Performing unwrapping with a C/Matlabim-
plementation of the MinimumLP Norm phase unwrapping algo-
rithm takes nearly a minute to process a single frame. Accelerat-
ing this processing would render the OQM imaging modality much
more useful in processing large stacks of images and providenear
real-time performance to visualize unwrapped output from the mi-
croscope.

3. ALGORITHMS USED IN OQM
As described above, since we cannot directly measure the phase
of an electrical field, we obtain the magnitude of different images
from the cameras. We process the magnitude values to obtain the
phase. The three main to obtain the optical path difference are:

1. An Affine Transform is run on the images obtained from the

four frame grabbers for alignment purposes,

2. A noise removal step is performed, and

3. Phase unwrapping is performed to obtain the optical path dif-
ference from the phase difference.

3.1 Affine Transformation
Phase Unwrapping converts phase data into path difference infor-
mation by looking at the phase difference between neighboring pix-
els. An Affine Transform [7] is used to compensate for imperfec-
tions in the acquisition equipment. Since data present at the same
coordinates in images from two different cameras may not corre-
spond to the same location in the real sample, so an Affine Trans-
form is applied directly after images are collected. If we were to use
images omitting this step, the phase gradients that we wouldcom-
pute in the unwrapping step would not correspond to neighboring
pixels.

An Affine Transform involves operations including translation, scal-
ing, rotation, skewing and reflection. As described [7], thetrans-
form can be expressed using matrix form:
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Equation 8 shows that an affine transformation can be described as
a matrix multiplication problem, where the location at which a data
point is stored is decided by the result of a multiplication of the old
coordinates of the point with a transformation matrix.

The new coordinates of each pixel (x’,y’) on the image can be ex-
pressed in terms of the matrix in Equation 8 and the old coordinates.
We use the values of the 2x2 matrix obtained from the OQM frame
grabbers. Only the final values of the 2x2 and 2x1 matrices are
available.

3.2 Noise Removal
After the Affine Transform is applied and the images from the four
cameras are aligned on a 2D grid, noise removal is performed.
Noise removal is needed because of the presence of dark detec-
tor voltages and the fixed-pattern levels of the individual cameras
which are caused by using non-ideal components. The dark detec-
tor voltage is removed by subtracting a dark image (image grabbed
without the laser) from the sample image. The noise introduced
by nonideal components is removed on a per camera basis and re-
quires subtraction ofSn andRn. The square root ofRn computed
in Equation 10 normalizes each component to ensure balancedin-
tensities for detection.

After computing Equation 10, we obtain images where the change
in phase is only due to the sample being imaged. The images from
each camera (the camera number denoted byn in Equation 10) are
combined in Equation 10. This yields a complex number, and by
calculating the angle, we extract the phase of the sample. This is
the wrapped phase that is then passed to the phase unwrap code.

Mn ←Mn −Dn (9)
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3.3 Phase Unwrapping
In an ideal situation, the phase of an unwrapped signal varies such
that the gradient between pixels is less than a half-cycle, or π ra-
dians. If this is true, then a wrapped version of this image may be
unwrapped by simply summing (i.e. integrating in the continuous
domain) until a gradient ofπ is reached at which point the phase
is added to an integer multiple of2π and the summation continues.
This is the method for solving 1D phase-based data sets.

In 2 dimensions and if the data is noisy, phase gradients greater
thanπ are created due to noise. These large phase gradients can
lead to image corruption over large segments of the data. Even
low levels of noise (i.e., belowπ) lead to an accumulation of error
that eventually results in large deviations. Such errors lead to the
presence of residues. A residue is defined as a point where the
integral over a closed four pixel loop is not zero.

As mentioned earlier, we use the MinimumLp Norm Algorithm
for the unwrapping. This algorithm seeks to generate a solution
whose local phase gradients match the original wrapped phase gra-
dients as closely as possible. In order to describe the MinimumLp

Norm algorithm, we first neeed to discuss the conjugate gradient
method, as well as the preconditioning that is applied to theim-
age, since these two elements constitute the core computation of
the MinimumLp Norm algorithm.

3.3.1 Preconditioned Conjugate Gradient
The Preconditioned Conjugate Gradient algorithm generates iter-
ations of theunweighted least squares algorithm in order to per-
form a weighted phase unwrap. The unweighted least squares
algorithm minimizes the difference between the gradients of the
wrapped phase dataφ and the gradients of the unwrapped phase
data∆. Our goal is to obtain theφi,j that minimizes Equation 11.

ǫ
2 =

M−2
X

i=0

N−2
X

j=0

(φi+1,j − φi,j −∆x
i,j)

2 (11)

+

M−2
X

i=0

N−2
X

j=0

(φi,j+1 − φi,j −∆y
i,j)

2

whereφi+1,j − φi,j is the phase difference in the x direction be-
tween the points(i + 1, j) and(i, j) of the unwrapped phase and
∆x

i,j represents the phase difference in the x direction in the wrapped
phase. The reduced expression can rewritten and discretized using
the Poisson equation given by:

(φi+1,j−2φi,j+φi−1,j)+(φi,j+1−2φi,j+φi,j−1) = ρi,j , (12)

where

ρi,j = (∆x
i,j −∆x

i−1,j) + (∆y
i,j −∆y

i,j−1) (13)

Equation 12 solves the unweighted problem and is used to pre-
condition the image matrix prior to running the conjugate gradi-
ent method. Preconditioning gives the matrix a better condition
number allowing it to converge rapidly. Equation 12 is solved in
the frequency domain using a 2D Discete Cosine Transform (DCT)
and Inverse Discrete Cosine Transform.

The DCT algorithm selected uses a Discrete Fourier Transform
(DFT) [9]. We utilize a GPU based FFT library called CUFFT pro-
vided by NVIDIA [12]. Pseudocode for the preconditioning step
(which is part of a conjugate gradient method) is shown in Algo-
rithm 1.

Algorithm 1 Preconditioned Conjugate Gradient
for k ← 0 To Max Iterations-1do

Apply Preconditioning
Do Conjugate Gradient Steps
Check For Convergence between Old and New Values
if Convergencethen

Exit Loop
end if

end for

3.3.2 MinimumLp Norm Phase Unwrapping Algo-
rithm

The MinimumLp Norm algorithm minimizes the number of dis-
continuities in the unwrapped solution without concern forthe mag-
nitude of these discontinuities [4]. The MinimumLp Norm algo-
rithm can be used with or without user-supplied weights thatdenote
the importance or quality of a pixel. The MinimumLp Norm Al-
gorithm iteratively runs the PCG algorithm, which in turn calls the
DCT code.

The Minimum Lp Norm is similar to the PCG method since it
also aims to minimize the difference between the gradients of the
measured and calculated phases. The quality of an unwrap can
be measured in terms of the number of residues in the image. A
residue is defined as a point where the integral over a closed four
pixel loop is not zero. PCG setsp = 2 or uses the least squares
norm(Equation 11) whereas the MinimumLp Norm algorithm uses
p = 0 as seen in Equation 14. The value ofp = 0 generally pro-
duces the best solution [4] This means that the MinimumLp Norm
algorithm minimizes the number of points where gradients ofthe
wrapped phase differ from the unwrapped phase whereas the PCG
algorithm minimizes the square of the differences. Equation 14
represents a weighted phase unwrap problem where the matricesU
andV represent automatically generated data-dependent weights
that indicate the quality of the phase data at particular pixel loca-
tions.

(φi+1,j − φi,j)Ui,j + (φi,j+1 − φi,j)Vi,j − (14)

(φi,j − φi−1,j)Ui−1,j − (φi,j − φi,j−1)Ui,j−1

= c(i, j)

HereU andV are data-dependent weights andc is the weighted
phase Laplacian given by

c(i, j) = ∆x
i,jU(i, j)−∆x

i−1,jU(i− 1, j) (15)

+∆y
i,jV (i, j) −∆y

i,j−1V (i, j − 1)

This equation can be rewritten as a matrix equation, as shownin
Equation 16.

Qφ = c, (16)

This equation takes the same form as the PCG equation, and so
can be solved using the same methodology as presented in Sec-
tion 3.3.1. The Algorithm for the MinimumLP Norm is described



in Algorithm 2.

Algorithm 2 Minimum Lp Norm Phase Unwrapping Pseudocode

for k ← 0 To Max Iterationsdo
Compute Residual R
Exit it No Residues
Compute data dependent weights U and V
Compute weighted phase Laplacian c
Call PCG (Algorithm 1)

end for
if No Residues Leftthen

Unwrap using any simple algorithm like Goldstein
else

Do Post Processing or Error Out
end if

4. CUDA INFORMATION
We provide an overview of NVIDIA’s Compute Unified Device Ar-
chitecture model (CUDA) [13] in order to justify the use of a GPU
in our application. We use the NVIDIA 8800GTX GPU which sup-
ports the CUDA programming model. The microarchitecture ofthe
system is as shown in Figure 2. The G80 GPU consists of a large
number of streaming multiprocessors (SMs) - 16 for the 8800GTX
version- which access a global memory. The GPU’sunified archi-
tectureand the low-latency shared memory, make it possible to run
non-graphics programs easily, thus harnessing the GPU’s tremen-
dous computing power for data parallel applications.

The typical model for utilizing a GPU is to treat it as a co-processor.
The application developer then has to re-write his/her “kernel code”
in order to execute on the GPU The host processor transfers input
data to the GPU memory before executing the kernel and sends
the output data back after the kernel completes execution. This
programming model provides asynchronous concurrent kernel ex-
ecution where control returns to the calling program as soonas
the kernel is called. The hardware specifications of the NVIDIA
8800GTX used in this work are provided in Table 1.

NVIDIA
GeForce 8800GTX

# Multi Processors 16
# Scalar Processors 128

Shader Engine Clock 1500 MHz
Memory Clock 1080 MHz

Memory Interface 384 bits
Memory Bandwidth 103.7 GB/s
Peak Performance 320GFLOPS

Table 1: Hardware specifications of NVIDIA 8800 GTX.

The specifications of the host system is presented below in Table 2.

Programming Model: CUDA follows a data parallel program-
ming model where each thread works with its own data. In orderto
specify the number of threads we must provide anexecution config-
uration to CUDA. The execution configuration specifies the “grid”
which consists of a number of threads divided into equally sized
blocks. CUDA allows a programmer to index each thread in the
grid via thread idandblock id, which are accessible via keywords
threadIdx andblockIdx.

CUDA provides two levels of data parallelism: 1) fine-grained data

Component Value
Processor Core 2 Duo (Penryn)

L1 Data Cache 2x32kb
L2 Cache 6MB
Frequency 3Ghz

Number of Cores 2
RAM 4GB DDR2

Front Side Bus 4X 333M

Table 2: Host system configuration.

Figure 2: CUDA Hardware Model

parallelism due to multiple threads within a block that access the
low-latency local shared memory and execute independently, 2)
coarser-grained parallelism (i.e., thread parallelism) that is avail-
able in the different blocks of threads that can be executed on dif-
ferent SM’s and can access the larger global memory (though with
more latency). The programmer must first partition the problem
into subproblems which can be solved cooperatively throughshared
memory for maximum performance.

The CUDA programming model is commonly described asSIMT
(single instruction multiple thread) [13]. Each thread is mapped to
a single scalar processor core of the SM. Each thread is able to exe-
cute independently (i.e., with its own instruction addressand regis-
ter state)Warpsare defined as a group of 32 threads that are created,
managed, and scheduled by the SIMT unit with little overhead. To
an application programmer, CUDA programming consists of exten-
sions to ANSI C where the GPU is treated as a co-processor. The
NVIDIA NVCC compiler seperates the code to run on the GPU or
the CPU, though it is guided by simple C-like constructs provided
by the programmer.



We take advantage of these properties of the GPU in our applica-
tion since the Affine Transforms and noise removal both are data
parallel applications with the same operation is done on each pixel.
For these applications we define a grid to be the size of the image
and process different parts of the image in different parallel blocks
on the multiple SMs on the GPU. Phase unwrapping also involves
some element-wise operations including complex multiplication.

5. CUDA IMPLEMENTATION
In this section we explain how we implement the algorithms de-
scribed in Section 3 in the OQM process on the GPU.

5.1 Affine Transformation
The Affine Transform described in Equation 8 is used to align the
images obtained from the different cameras (see Figure 1). Anaive
implementation of an affine transform on a GPU is rather straight-
forward to code. As seen in the snippet shown in Algorithm 3, we
compute one pixel using one thread. An important feature of this
kernel lies in the method used to obtain the (x,y) coordinates for
each pixel from each thread’s block id and thread id. This removes
the need for moving a precomputed coordinate system grid from the
CPU to the GPU. Using the thread number ((BLOCKID)(BLOCKSIZE)+
ThreadID) we get the (x,y) coordinates of a pixel which we mul-
tiply with the 2*2 Matrix to get the new coordinates.

Algorithm 3 Affine Transformation CUDA kernel pseudocode
Below Code Represents Contents of One Kernel
x←f(Blockidx.x, Threadidx.x)
y ←f(Blockidx.x, Threadidx.x)
PixelV alue←Image(x,y)
x′ ←ax+by+α
y′ ←cx+dy+β

As Per Equation 8
Image(x’,y’)←PixelValue

Scatter & Gather Operations: In the psueudocode for Affine
Transform (Algorithm 3) we see that the location of the result is
decided by the value of the Affine calculations. This operation
does not allow us to coalesce the memory accesses since the ac-
cess patterns are not known apriori. This is a common data paral-
lel access problem called “scatter”. Scatter operations write data
to arbitrary locations and “gather” operations read data from ar-
bitrary locations. These operations are highly memory intensive.
This problem has been studied in the past on GPUs [5]. We have
observed this problem in our own application, but have not yet ap-
plied the methods shown in [5]. The method described [5] to deal
with the memory bandwidth bottleneck implements a multi-pass
methodology for scatters to improve data locality and increase coa-
lescing possibilities. The benefits of a multi-pass technique [5] are
noticeable for data sets that are greater than 10MB in size. Asingle
matrix operated on by our kernel is only640 ∗ 480 ∗ 4 = 1.2MB.
For this reason even while using a naive Affine Transform imple-
mentation, we achieve reasonable speedup since each threadper-
forms a scatter for a single element, and this is only done once for
each kernel execution.

5.2 Noise Removal
As discussed in Section 3.2, noise removal is done by using Equa-
tions 9 and 10. Writing kernels that perform point-wise subtrac-
tion would be trivial. However, due to the presence of very low-
arithmetic intensity (i.e., the ratio of the amount of computation

to memory accesses) in a kernel containing just a few subtrac-
tions, a naive implementation is not a good candidate since mem-
ory latency cannot be hidden easily. Instead we use the high per-
formance library for CUDA called CUBLAS. This is an imple-
mentation of the Basic Linear Algebra Subprograms (BLAS) li-
brary that takes advantage of the data parallel hardware on the
NVIDIA GPU. The performance difference between subtraction
with BLAS and a naive kernel is shown in Figure 3, where we do a
simple Saxpy operationX ← X +α∗Y using the BLAS function
SAXPY (x, y, α) and compare it with a naive kernel. We imple-
mented the subtraction expressions of equation 10 using a set of
SAXPY calls by settingα = −1.
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Figure 3: Comparing CUBLAS and naive implementations of
SAXPY.

As seen in Figure 3, the usage of optimized BLAS is justified for
noise removal, and the fact that data is already available onthe GPU
and the resultant data will be needed for phase unwrapping onthe
GPU, makes it worthwhile to use the GPU for an Affine Transform
even for the unoptimized scatter algorithm.

5.3 Phase Unwrap GPU Implementation
Our GPU implementation uses a combination of NVIDIA supplied
libraries and some custom kernels to implement the preconditioner
and the conjugate gradient calculation, along with kernelsspecific
to the MinimumLP Norm calculation. Both theLp Norm and
PCG algorithm kernels were implemented on the GPU. This elim-
inates much of the data transfer between successive iterations as
compared to implementing only the preconditioner.

As shown in Algorithm 4, it became necessary to also implement
kernels that performed the two-dimensional shuffle and complex
multiplication in order to convert between the FFT and the DCT.
We see that the FFT calculation is the most time-consuming part of
the DCT computation, followed by the shuffle.

5.3.1 Preconditioner Implementation
The preconditioner uses a 2D DCT/iDCT and some floating point
computation in order to transform the input matrix into a form that
converges rapidly when the conjugate gradient method is used to
solve the equations presented in Section 3.3.1. The algorithm used
for the DCT [9] focuses on the reuse of an existing 2D FFT. In
our case, we use the CUFFT library provided by NVIDIA for im-
plementing a DFT on a GPU [12]. CUFFT provides a complex
Fourier transform that leverages the parallelism available on GPUs
to rapidly compute 1D, 2D or 3D transforms. It is similar to the



Algorithm 4 The Minimum Lp Norm algorithm pseudocode.
for k ← 0 To Max Iterationsdo

Calculate Derived Weights
Calling PCG Method
for j ← 0 To PCG Iteration Countdo

//Started Preconditioning Steps shown below
DCT To DFT Steps (Shuffle Kernel)
Execute CUFFT Call to do DCT
Point-Wise Complex Multiplication to Get DCT Result
Scaling Step
Execute CUFFT Call to do iDCT
//Finished Preconditioning Steps
Conjugate Gradient Steps as in Algorithm 1

end for
end for
if No Residues Remainthen

RasterUnwrap()
end if

popular FFTW library [3] since it uses a plan based approach to
setting up and executing FFTs.

The first step of the 2D DCT is a two-dimensional shuffle. This
shuffle reorders the input matrix in four different ways depending
on the location of the individual data point. This procedureis not
compute bound and is only limited by the performance of the mem-
ory bus and the efficiency of scatter/gather operations. Thecom-
plex multiply step represents a straightforward kernel that is easily
parallelized since each matrix value can be operated upon indepen-
dently. This was implemented in CUDA using a thread-per-pixel
model which assigns a thread to each matrix data point.

5.3.2 Point-Wise Multiplication
There are several point-wise matrix multiplications/additions and
matrix accumulates. Point-wise functions parallelize extremely well
since there are no dependencies between data points. To implement
these functions, a similar method to the complex multiplication was
used.

5.3.3 Reduction Kernels
An accumulation kernel was needed in order to compute the aver-
age magnitude of the elements. This was more complicated than
expected since there are dependencies between elements inherent
in accumulation and so it cannot be parallelized to the same degree.
In stream processing terminology, this operation is calleda reduc-
tion since the number of threads goes fromN2 for a N xN matrix
to 1. This operation was frequently used and so it was necessary to
optimize it further. A number of standard techniques [10, 14] were
used including conflict-free sequential addressing, maximal thread
utilization and to completely unroll loops.

6. SYSTEM INTEGRATION AND AUTOMA-
TION

The OQM framework has a very heterogeneous structure in the
sense that we have different systems that collaborate to solve a
problem. Four Matrox frame grabbers are used for obtaining the
images. Matlab and the Image Acquisition Toolbox are used to
convert the image into a numerical matrix and provides a frame-
work to view and save resultant images.The GPU code needed to
be integrated into this environment.

Previously, in OQM the image acquisition process involved run-
ning the Affine Transform and also noise removal. These opera-
tions were done in Matlab. After the noise removal was complete,
the data would be saved on the disk and the C-based implementa-
tion of the Phase Unwrap would be launched. Typically, the user
would not use the saved data again. This would lead to unneces-
sary disk activity since data would need to be written by the Affine
Transformation and noise removal steps and then again read for the
Phase Unwrap.

Figure 4: The flow of the GPU processing in OQM System.

To accommodate working with Matlab, we use the NVMex script
provided by NVIDIA [11] that allows us to compile CUDA code
and make it callable from within Matlab. We utilize Matlab’sExter-
nal Interface (MEX) [1] which can be used to generate dynamically-
linked subroutines from C code. NVmex is a script from NVIDIA
that uses MEX and NVCC in order to make it possible to call
CUDA code from Matlab in a manner similar to regular C code.

6.1 Usage of MEX Files
The only extra overhead associated with using MEX files is to in-
clude a simple gateway function that contains function calls needed
to make arrays within Matlab (i.e., mxArrays) accessible toour
wrapper. This allows us to send data generated by Matlab to the
GPU by simply using pointer passing.

To use MEX files, we wrote wrappers for the GPU-based code.
The wrapper contains a function call to the code that communicates
with the GPU. Our code for unwrapping or affine transforms did
not need to be changed. The flow of the system is as shown in
Figure 4. Once the image is acquired by the frame-grabbers and
we move into the MEX wrapper, all disk IO associated with saving
state is eliminated and there is no need to return to Matlab.

6.2 Image Examples
Next, we provide examples using typical image data sets and dis-
cuss how they are used. The camera frame-grabbers capture the
magnitude of all four different kinds of images. The images shown
here are of a mouse embryo with four cells. The four types of im-
ages (mixed, signal only, reference only and dark) are shownin
Figures 5to 8 and are obtained for each camera by manipulating
the shutters. This equals a total of 16 images (4 types of images, 4
cameras). We show only a single set of images from one camera.



These images undergo the Affine Transform (Section 3.1) and dark
subtraction (Section 3.2) on the GPU. The signal and reference im-
ages in Figures 6 and 7 are subtracted as per equation 10 and com-
bining the images from all four cameras we obtain the a matrixof
complex numbers. The angle of this complex number yields the
wrapped phase between−π and+π, as shown in Figure 9.

Figure 5: Mixed Image Figure 6: Signal Image

Figure 7: Reference Image Figure 8: Dark Image

As seen, the image in Figure 9 has transitions and discontinuities
around the edges of the sample (i.e., the changes in color around
the border between the sample and the media). It is not easy to
discern details of the sample due to the multiple small transitions
inside the sample. However, after completing the unwrap, wecan
see in Figure 10 the color transition from the culture media to the
middle of the sample is very smooth and even an untrained eye can
see difference in the level of detail in the embryo. It is fairly easy to
count the 4 cells seen in the embryo in Figure 10. This final image
is the motivation and output of this research.

7. PERFORMANCE & RESULTS
Next, we discuss the performance of our accelerated application on
the GPU.Due to the complexity and heterogeneous nature of our
application, the speedup and performance of our system is quoted
not only for our GPU-based kernels, but for the complete system
which includes the time spent in Matlab wrappers and the diskIO.

7.1 Phase Unwrap Only
The frame grabbers used in the Optical Science Lab acquire images
at a resolution of 640*480. To produce a reasonable baseline, we

Figure 9: Wrapped Phase Image

Figure 10: Unwrapped Image



use a mature C-based implementation of phase unwrap described
in [4]. The implementation provided [2] used the FFTW library [3]
which is a highly-tuned library for implementing an FFT on a reg-
ular CPU. In the phase unwrapping problem, due to the complexity
and heterogeneous nature of the system, we analyze the main parts
of the algorithm and look at the individual speedups rather than
cumulative performance numbers.

Execution time is reduced from an average of 15 seconds for the
software FFTW based version to 2.8 seconds on the GPU. This in-
cludes the time to run the preconditioner and perform the conjugate
gradient calculations. These numbers were generated for a glass
bead dataset and represent 200 iterations of the PCG kernel.The
glass bead in oil is an excellent benchmark to use since it produces
a very large number of residues and is usually very hard to unwrap.

More detailed runtimes are provided in Table 7.1. The MEX+GPU
column uses the same implementation as the GPU. However the
code is called from within Matlab as discussed in Section 6. We do
not quote a speedup number for the MEX+GPU IO activity since
the only IO related activity is simple pointer passing.

Figure 11 shows a breakdown of the percentage of time taken by
each component of the unwrapping code. An important detail to
be noted is that the “IO Activity” term in Table 7.1 defines “IO
Activity“ as memory accesses done when reading and writing the
phase data. In both the baseline and the GPU implementation it is
the same value since both read and write the same data to disk.So
the percentage of time spent on I/O activity increases in Figure 11
as can bee seen in Table 7.1 for the GPU case. The results for the
MEX+GPU case in Table 7.1 indicate that we are not bound by
disk activity. Only .02 seconds is spent in the MEX wrapper to
process data visible from within MATLAB and pass the pointers to
the CUDA code.
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Figure 11: Time taken by each component for C implementation
and GPU implementation.

7.2 Affine Transforms
Run time of the Affine Transform algorithm, unlike the Phase Un-
wrap algorithm, remains the same irrespective of the type ofdata
used. In this case the baseline performance was the Matlab im-
plementation of an Affine Transform. The Affine Transform was
called after the Image Acquisition Toolbox’s getdata() function is
run. The baseline time taken by a Matlab implementation was
1.25 seconds. The GPU implementation (even using the unopti-

mized scatter operation described in Algorithm 3) completes the
Affine Transform processing and the BLAS calls for noise removal
in 0.2seconds, thus yielding a 6.25X speedup

8. FUTURE WORK
Future work on this framework includes adding support for multi-
ple GPUs which would allow us to also implement a coarser grain
of parallelism (e.g., running multiple unwrap algorithms). Such
work would be useful for high throughput imaging and broaden
the scope of OQM to new domains where we may need to acquire
multiple images in less time than it takes to process a singleimage.

We can also explore using cudastreams, which would allow us to
overlap execution and computation. The code of the Affine Trans-
form and the Phase Unwrap are both good targets for further opti-
mization and we can improve their performance even more. Pursu-
ing better methods to implement scatter/gather would also be help-
ful since they are used in both affines and preconditioning.

9. CONCLUSION
We have implemented the MinimumLp Norm Phase Unwrap al-
gorithm on CUDA. In addition we implemented parallelized algo-
rithms for Affine Transform and noise removal on a GPU. We ob-
tain a speedup of 7.3X for the entire system by accelerating not only
GPU code, but by also reducing the overhead associated with inter-
facing with Matlab by reducing some disk activity. Our approached
does not change the image acquisition methodology. Using a GPU,
we are closer to our goal of real-time OQM imaging. We plan to
pursue using multiple GPUs in future work.
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