1,575 research outputs found

    A Study of Reconfigurable Accelerators for Cloud Computing

    Get PDF
    Due to the exponential increase in network traffic in the data centers, thousands of servers interconnected with high bandwidth switches are required. Field Programmable Gate Arrays (FPGAs) with Cloud ecosystem offer high performance in efficiency and energy, making them active resources, easy to program and reconfigure. This paper looks at FPGAs as reconfigurable accelerators for the cloud computing presents the main hardware accelerators that have been presented in various widely used cloud computing applications such as: MapReduce, Spark, Memcached, Databases

    Just In Time Assembly (JITA) - A Run Time Interpretation Approach for Achieving Productivity of Creating Custom Accelerators in FPGAs

    Get PDF
    The reconfigurable computing community has yet to be successful in allowing programmers to access FPGAs through traditional software development flows. Existing barriers that prevent programmers from using FPGAs include: 1) knowledge of hardware programming models, 2) the need to work within the vendor specific CAD tools and hardware synthesis. This thesis presents a series of published papers that explore different aspects of a new approach being developed to remove the barriers and enable programmers to compile accelerators on next generation reconfigurable manycore architectures. The approach is entitled Just In Time Assembly (JITA) of hardware accelerators. The approach has been defined to allow hardware accelerators to be built and run through software compilation and run time interpretation outside of CAD tools and without requiring each new accelerator to be synthesized. The approach advocates the use of libraries of pre-synthesized components that can be referenced through symbolic links in a similar fashion to dynamically linked software libraries. Synthesis still must occur but is moved out of the application programmers software flow and into the initial coding process that occurs when programming patterns that define a Domain Specific Language (DSL) are first coded. Programmers see no difference between creating software or hardware functionality when using the DSL. A new run time interpreter is introduced to assemble the individual pre-synthesized hardware accelerators that comprise the accelerator functionality within a configurable tile array of partially reconfigurable slots at run time. Quantitative results are presented that compares utilization, performance, and productivity of the approach to what would be achieved by full custom accelerators created through traditional CAD flows using hardware programming models and passing through synthesis

    AutoAccel: Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture

    Full text link
    CPU-FPGA heterogeneous architectures are attracting ever-increasing attention in an attempt to advance computational capabilities and energy efficiency in today's datacenters. These architectures provide programmers with the ability to reprogram the FPGAs for flexible acceleration of many workloads. Nonetheless, this advantage is often overshadowed by the poor programmability of FPGAs whose programming is conventionally a RTL design practice. Although recent advances in high-level synthesis (HLS) significantly improve the FPGA programmability, it still leaves programmers facing the challenge of identifying the optimal design configuration in a tremendous design space. This paper aims to address this challenge and pave the path from software programs towards high-quality FPGA accelerators. Specifically, we first propose the composable, parallel and pipeline (CPP) microarchitecture as a template of accelerator designs. Such a well-defined template is able to support efficient accelerator designs for a broad class of computation kernels, and more importantly, drastically reduce the design space. Also, we introduce an analytical model to capture the performance and resource trade-offs among different design configurations of the CPP microarchitecture, which lays the foundation for fast design space exploration. On top of the CPP microarchitecture and its analytical model, we develop the AutoAccel framework to make the entire accelerator generation automated. AutoAccel accepts a software program as an input and performs a series of code transformations based on the result of the analytical-model-based design space exploration to construct the desired CPP microarchitecture. Our experiments show that the AutoAccel-generated accelerators outperform their corresponding software implementations by an average of 72x for a broad class of computation kernels
    • …
    corecore