254 research outputs found

    Randomized Lagrangian Stochastic Approximation for Large-Scale Constrained Stochastic Nash Games

    Full text link
    In this paper, we consider stochastic monotone Nash games where each player's strategy set is characterized by possibly a large number of explicit convex constraint inequalities. Notably, the functional constraints of each player may depend on the strategies of other players, allowing for capturing a subclass of generalized Nash equilibrium problems (GNEP). While there is limited work that provide guarantees for this class of stochastic GNEPs, even when the functional constraints of the players are independent of each other, the majority of the existing methods rely on employing projected stochastic approximation (SA) methods. However, the projected SA methods perform poorly when the constraint set is afflicted by the presence of a large number of possibly nonlinear functional inequalities. Motivated by the absence of performance guarantees for computing the Nash equilibrium in constrained stochastic monotone Nash games, we develop a single timescale randomized Lagrangian multiplier stochastic approximation method where in the primal space, we employ an SA scheme, and in the dual space, we employ a randomized block-coordinate scheme where only a randomly selected Lagrangian multiplier is updated. We show that our method achieves a convergence rate of O(log(k)k)\mathcal{O}\left(\frac{\log(k)}{\sqrt{k}}\right) for suitably defined suboptimality and infeasibility metrics in a mean sense.Comment: The result of this paper has been presented at International Conference on Continuous Optimization (ICCOPT) 2022 and East Coast Optimization Meeting (ECOM) 202

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    The Geometry of Monotone Operator Splitting Methods

    Full text link
    We propose a geometric framework to describe and analyze a wide array of operator splitting methods for solving monotone inclusion problems. The initial inclusion problem, which typically involves several operators combined through monotonicity-preserving operations, is seldom solvable in its original form. We embed it in an auxiliary space, where it is associated with a surrogate monotone inclusion problem with a more tractable structure and which allows for easy recovery of solutions to the initial problem. The surrogate problem is solved by successive projections onto half-spaces containing its solution set. The outer approximation half-spaces are constructed by using the individual operators present in the model separately. This geometric framework is shown to encompass traditional methods as well as state-of-the-art asynchronous block-iterative algorithms, and its flexible structure provides a pattern to design new ones
    corecore