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Abstract This paper considers the relaxedPeaceman–Rachford (PR) splittingmethod
for finding an approximate solution of a monotone inclusion whose underlying oper-
ator consists of the sum of two maximal strongly monotone operators. Using general
results obtained in the setting of a non-Euclidean hybrid proximal extragradient frame-
work, we extend a previous convergence result on the iterates generated by the relaxed
PR splitting method, as well as establish new pointwise and ergodic convergence rate
results for the method whenever an associated relaxation parameter is within a cer-
tain interval. An example is also discussed to demonstrate that the iterates may not
converge when the relaxation parameter is outside this interval.
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1 Introduction

In this paper, we consider the relaxed Peaceman–Rachford (PR) splitting method for
solving the monotone inclusion

0 ∈ (A + B)(u) (1)

where A : X ⇒ X and B : X ⇒ X are maximal β-strongly monotone (point-to-
set) operators for some β ≥ 0 (with the convention that 0-strongly monotone means
simply monotone, and β-strongly monotone with β > 0 means strongly monotone in
the usual sense). Recall that the relaxed PR splitting method is given by

xk = xk−1 + θ(JB(2JA(xk−1) − xk−1) − JA(xk−1)), (2)

where θ > 0 is a fixed relaxation parameter and JT := (I +T )−1. The special case of
the relaxed PR splitting method in which θ = 2 is known as the Peaceman–Rachford
(PR) splitting method and the one with θ = 1 is the widely-studied Douglas–Rachford
(DR) splitting method. Convergence results for them are studied for example in [1–
4,8,13,14,22].

The analysis of the relaxed PR splitting method for the case in which β = 0
has been undertaken in a number of papers which are discussed in this paragraph.
Convergence of the sequence of iterates generated by the relaxed PR splitting method
is well-known when θ < 2 (see for example [1,7,14]) and, according to [16], its
limiting behavior for the case in which θ ≥ 2 is not known. We actually show in Sect.
5.2 that the sequence (2) does not necessarily converge when θ ≥ 2. An O(1/

√
k)

(strong) pointwise convergence rate result is established in [18] for the relaxed PR
splitting method when θ ∈ (0, 2). Moreover, when A = ∂ f and B = ∂g where f
and g are proper lower semi-continuous convex functions, papers [9–11] derive strong
pointwise (resp., ergodic) convergence rate bounds for the relaxed PR method when
θ ∈ (0, 2) (resp., θ ∈ (0, 2]) under different assumptions on the functions. Assuming
onlyβ-strongmonotonicity of A = ∂ f , whereβ > 0, some smoothness property on f ,
and maximal monotonicity of B, [16] shows that the relaxed PR splitting method has
linear convergence rate for θ ∈ (0, 2+ τ) for some τ > 0. Linear rate of convergence
of the relaxed PR splitting method and its two special cases, namely, the DR splitting
and PR splitting methods, are established in [2–4,11,15,16,22] under relatively strong
assumptions on A and/or B (see also Table 2).

This paper assumes that β ≥ 0, and hence its analysis applies to the case in which
both A and B are monotone (β = 0) and the case in which both A and B are strongly
monotone (β > 0). This paragraph discusses papers dealing with the latter case. Paper
[12] establishes convergence of the sequence generated by the relaxed PR splitting
method for any θ ∈ (0, 2 + β) and, under some strong assumptions on A and B,
establishes its linear convergence rate.We complement the convergence results in [12]
by showing that for θ = 2 + β, the sequence of iterates generated by the relaxed PR
splitting method also converge, and describe an instance showing its nonconvergence
when θ ≥ min{2 + 2β, 2 + β + 1/β}. Moreover, we establish strong pointwise and
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ergodic convergence rate results (Theorems 4.6 and 4.8) for the relaxed PR splitting
method when θ ∈ (0, 2 + β) and θ ∈ (0, 2 + β], respectively.

Finally, by imposing strong assumptions requiring one of the operators to be strong
monotone and one of them to be Lipschitz (and hence point-to-point), [11,15,16]
establish linear convergence rate of the relaxed PR splitting method. As opposed to
these papers, the assumptions in [12] and this paper do not imply the operators A or
B to be point-to-point.

Our analysis of the relaxed PR splitting method for solving (1) is based on viewing
it as an inexact proximal point method, more specifically, as an instance of a non-
Euclidean hybrid proximal extragradient (HPE) framework for solving the monotone
inclusion problem. The proximal point method, proposed by Rockafellar [29], is a
classical iterative scheme for solving the latter problem. Paper [30] introduces an
Euclidean version of the HPE framework which is an inexact version of the proximal
point method based on a certain relative error criterion. Iteration-complexities of the
latter framework are established in [25] (see also [26]). Generalizations of the HPE
framework to the non-Euclidean setting are studied in [17,21,31]. Applications of the
HPE framework can be found for example in [19,20,25,26].

This paper is organized as follows. Section 2 describes basic concepts and notation
used in the paper. Section 3 discusses the non-EuclideanHPE frameworkwhich is used
to the study the convergence properties of the relaxed PR splitting method in Sects. 4
and 5. Section 4 derives convergence rate bounds for the relaxed Peaceman–Rachford
(PR) splittingmethod. Section 5,which consists of two subsections, discusses a conver-
gence result of the relaxed PR splitting method in the first subsection and provides an
example showing that its iteratesmay not convergewhen θ ≥ min{2+2β, 2+β+1/β}
in the second subsection. Finally, Sect. 6 discusses the numerical performance of the
relaxed PR splitting method for solving the weighted Lasso minimization problem.
Section 7 gives some concluding remarks.

2 Basic concepts and notation

This section presents some definitions, notation and terminology which will be used
in the paper.

We denote the set of real numbers by R and the set of non-negative real numbers
by R+. Let f and g be functions with the same domain and whose values are in R+.
We write that f (·) = �(g(·)) if there exists constant K > 0 such that f (·) ≥ Kg(·).
Also, we write f (·) = �(g(·)) if f (·) = �(g(·)) and g(·) = �( f (·)).

Let Z be a finite-dimensional real vector space with inner product denoted by 〈·, ·〉
(an example of Z is Rn endowed with the standard inner product) and let ‖ · ‖ denote
an arbitrary seminorm inZ . Its dual (extended) seminorm, denoted by ‖·‖∗, is defined
as ‖ · ‖∗ := sup{〈·, z〉 : ‖z‖ ≤ 1}. It is easy to see that

〈z, v〉 ≤ ‖z‖‖v‖∗ ∀z, v ∈ Z. (3)

The following straightforward result states some basic properties of the dual semi-
norm associatedwith amatrix seminorm. Its proof can be found for example in Lemma
A.1(b) of [23].
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Proposition 2.1 Let A : Z → Z be a self-adjoint positive semidefinite linear opera-
tor and consider the seminorm ‖ · ‖ in Z given by ‖z‖ = 〈Az, z〉1/2 for every z ∈ Z .
Then, dom ‖ · ‖∗ = Im (A) and ‖Az‖∗ = ‖z‖ for every z ∈ Z .

Given a set-valued operator T : Z ⇒ Z , its domain is denoted by Dom(T ) :=
{z ∈ Z : T (z) �= ∅} and its inverse operator T−1 : Z ⇒ Z is given by T−1(v) := {z :
v ∈ T (z)}. The graph of T is defined by Gr(T ) := {(z, t) : t ∈ T (z)}. The operator
T is said to be monotone if

〈z − z′, t − t ′〉 ≥ 0 ∀(z, t), (z′, t ′) ∈ Gr(T ).

Moreover, T is maximal monotone if it is monotone and, additionally, if T ′ is a
monotone operator such that T (z) ⊂ T ′(z) for every z ∈ Z , then T = T ′. The
sum T + T ′ : Z ⇒ Z of two set-valued operators T, T ′ : Z ⇒ Z is defined by
(T + T ′)(z) := {t + t ′ ∈ Z : t ∈ T (z), t ′ ∈ T ′(z)} for every z ∈ Z . Given a scalar
ε ≥ 0, the ε-enlargement T [ε] : Z ⇒ Z of a monotone operator T : Z ⇒ Z is
defined as

T [ε](z) := {t ∈ Z : 〈t − t ′, z − z′〉 ≥ −ε, ∀z′ ∈ Z, ∀t ′ ∈ T (z′)} ∀z ∈ Z. (4)

3 A non-Euclidean hybrid proximal extragradient framework

This section discusses the non-Euclidean hybrid proximal extragradient (NE-HPE)
framework and describes its associated convergence and iteration complexity results.
The results of the section will be used in Sects. 4 and 5 to study the convergence and
iteration complexity properties of the relaxed PR splitting method (2). It contains two
subsections. The first one describes a class of distance generating functions introduced
in [17]. The second one describes the NE-HPE framework and its corresponding
convergence and iteration complexity results.

For the sake of shortness, all the results in this section are stated without proofs
which, in turn, can be found in Section 3 of the technical report version of this paper
(see [24]).

3.1 A class of distance generating functions

We start by introducing a class of distance generating functions (and its corresponding
Bregman distances) which is needed for the presentation of the NE-HPE framework
in Sect. 3.2.

Definition 3.1 For a given convex set Z ⊂ Z , a seminorm ‖ · ‖ in Z and scalars
0 < m ≤ M , we let DZ (m, M) denote the class of real-valued functions w which are
differentiable on Z and satisfy

w(z′) − w(z) − 〈∇w(z), z′ − z〉 ≥ m

2
‖z − z′‖2 ∀z, z′ ∈ Z , (5)

‖∇w(z) − ∇w(z′)‖∗ ≤ M‖z − z′‖ ∀z, z′ ∈ Z . (6)
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A functionw ∈ DZ (m, M) is referred to as a distance generating function with respect
to the seminorm ‖ ·‖ and its associated Bregman distance dw : Z × Z → R is defined
as

(dw)(z′; z) = (dw)z(z
′) := w(z′) − w(z) − 〈∇w(z), z′ − z〉 ∀z, z′ ∈ Z . (7)

Throughout our presentation, we use the second notation (dw)z(z′) instead of the
first one (dw)(z′; z) although the latter one makes it clear that (dw) is a function
of two arguments, namely, z and z′. Clearly, it follows from (5) that w is a convex
function on Z which is in fact m-strongly convex on Z whenever ‖ · ‖ is a norm.

Note that if the seminorm in Definition 3.1 is a norm, then (5) implies that w is
strongly convex on Z , in which case the corresponding dw is said to be nondegenerate
on Z . However, since Definition 3.1 does not necessarily assume that ‖ · ‖ is a norm, it
admits the possibility of w being not strongly convex on Z , or equivalently, dw being
degenerate on Z .

Finally, some useful relations about the above class of Bregman distances can be
found in Sect. 3.1 of the technical report version of this paper (see Lemmas 3.2 and
3.3 of [24]).

3.2 The NE-HPE framework

This subsection describes the NE-HPE framework and its corresponding convergence
and iteration complexity results.

Throughout this subsection,we assume that scalars 0 < m ≤ M , convex set Z ⊂ Z ,
seminorm ‖ · ‖ and distance generating function w ∈ DZ (m, M) with respect to ‖ · ‖
are given. Our problem of interest in this section is the MIP

0 ∈ T (z) (8)

where T : Z ⇒ Z is a maximal monotone operator satisfying the following condi-
tions:

(A0) Dom (T ) ⊂ Z ;
(A1) the solution set T−1(0) of (8) is nonempty.

We now state a non-Euclidean HPE (NE-HPE) framework for solving the MIP (8)
which generalizes its Euclidean counterparts studied in the literature (see for example
in [25,27,30]).
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Framework 1 (An NE-HPE framework for solving (8)).

(0) Let z0 ∈ Z and σ ∈ [0, 1] be given, and set k = 1;
(1) choose λk > 0 and find (z̃k, zk, εk) ∈ Z × Z × R+ such that

rk := 1

λ k
∇(dw)zk (zk−1) ∈ T [εk ](z̃k), (9)

(dw)zk (z̃k) + λkεk ≤ σ(dw)zk−1(z̃k); (10)

(2) set k ← k + 1 and go to step 1.

end

We now make some remarks about Framework 1. First, it does not specify how to
find λk and (z̃k, zk, εk) satisfying (9) and (10). The particular scheme for computing
λk and (z̃k, zk, εk) will depend on the instance of the framework under consideration
and the properties of the operator T . Second, if w is strongly convex on Z and σ = 0,
then (10) implies that εk = 0 and zk = z̃k for every k, and hence that rk ∈ T (zk) in
view of (9). Therefore, the HPE error conditions (9)–(10) can be viewed as a relaxation
of an iteration of the exact non-Euclidean proximal point method, namely,

0 ∈ 1

λk
∇(dw)zk−1(zk) + T (zk).

We observe that NE-HPE frameworks have already been studied in [17,21] and [31].
The approach presented in this section differs from these three papers as follows.
Assuming that Z is an open convex set, w is continuously differentiable on Z and
continuous on its closure, [31] studies a special case of the NE-HPE framework in
which εk = 0 for every k, and presents results on convergence of sequences rather than
iteration complexity. Paper [21] deals with distance generating functions w which do
not necessarily satisfy conditions (5) and (6), and as consequence, obtains resultswhich
are more limited in scope, i.e., only an ergodic convergence rate result is obtained for
operators with bounded feasible domains (or, more generally, for the case in which
the sequence generated by the HPE framwework is bounded). Paper [17] introduces
the class of distance generating functions DZ (m, M) but only analyzes the behavior
of a HPE framework for solving inclusions whose operators are strongly monotone
with respect to a fixed w ∈ DZ (m, M) (see condition A1 in Section 2 of [17]). This
section on the other hand assumes that w ∈ DZ (m, M) but it does not assume any
strong monotonicity of T with respect to w.

Before presenting the main results about the the NE-HPE framework, namely,
Theorems 3.3 and 3.4 establishing its pointwise and ergodic iteration complexities,
respectively, and Propositions 3.5 and 3.6 showing that {zk} and/or {z̃k} approach
T−1(0) in terms of the Bregman distance (dw), we have the following result.

Proposition 3.2 For every k ≥ 1 and z∗ ∈ T−1(0), we have

(dw)zk−1(z
∗)−(dw)zk (z

∗)−(1−σ)(dw)zk−1(z̃k)≥λk
[〈rk, z̃k−z∗〉 + εk

]≥0. (11)
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As a consequence, the following statements hold:

(a) {(dw)zk (z
∗)} is non-increasing;

(b) limk→∞ λk
[〈rk, z̃k − z∗〉 + εk

] = 0;

(c) (1 − σ)
∑k

i=1(dw)zi−1(z̃i ) ≤ (dw)z0(z
∗).

Proof See the proof of Proposition 3.5 of [24]. ��
For the purpose of stating the convergence rate results below, define

(dw)0 := inf{(dw)z0(z
∗) : z∗ ∈ T−1(0)}. (12)

The following pointwise convergence rate result describes the convergence rate of
the sequence {(rk, εk)} of residual pairs associated to the sequence {z̃k}. Note that
its convergence rate bounds are derived on the best residual pair among (ri , εi ) for
i = 1, . . . , k rather than on the last residual pair (rk, εk).

Theorem 3.3 (Pointwise convergence) Let (dw)0 be as in (12) and assume that
σ < 1. Then, the following statements hold:

(a) if λ := inf λk > 0, then for every k ∈ N there exists i ≤ k such that

‖ri‖∗ ≤ M(1 + √
σ)

√√√√ 2(dw)0

(1 − σ)m

(
λ−1

∑k
j=1 λ j

)

≤ M(1 + √
σ)

λ
√
k

√
2(dw)0

(1 − σ)m
,

εi ≤ σ(dw)0

1 − σ

1
∑k

i=1 λi
≤ σ(dw)0

(1 − σ)λk
;

(b) for every k ∈ N, there exists an index i ≤ k such that

‖ri‖∗ ≤ M(1 + √
σ)

√√√√ 2(dw)0

(1 − σ)m

(
1

∑k
j=1 λ2j

)

, εi ≤ σ(dw)0λi

(1 − σ)
∑k

j=1 λ2j

.

(13)

Proof See the proof of Theorem 3.8 of [24]. ��
From now on, we focus on the ergodic convergence rate of the NE-HPE framework.

For k ≥ 1, define �k := ∑k
i=1 λi and the ergodic sequences

z̃ak = 1

�k

k∑

i=1

λi z̃i , rak := 1

�k

k∑

i=1

λi ri , εak := 1

�k

k∑

i=1

λi
(
εi + 〈ri , z̃i − z̃ak 〉

)
.

(14)
The following ergodic convergence result describes the association between the

ergodic iterate z̃ak and the residual pair (rak , εak ), and gives a convergence rate bound
on the latter residual pair.
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Theorem 3.4 (Ergodic convergence) Let (dw)0 be as in (12). Then, for every k ≥ 1,
we have

εak ≥ 0, rak ∈ T [εak ](z̃ak )

and

‖rak ‖∗ ≤ 2M

�k

√
2(dw)0

m
, εak ≤

(
3M

m

)
2(dw)0 + ρk

�k

where
ρk := max

i=1,...,k
(dw)zi (z̃i ). (15)

Moreover, the sequence {ρk} is bounded under either one of the following situations:

(a) σ < 1, in which case

ρk ≤ σ(dw)0

1 − σ
; (16)

(b) Dom T is bounded, in which case

ρk ≤ 2M

m
[(dw)0 + D] (17)

where D := sup{min{(dw)y(y′), (dw)y′(y)} : y, y′ ∈ Dom T } is the diameter
of Dom T with respect to dw.

Proof See the proof of Theorem 3.9 of [24]. ��
In the remaining part of this subsection, we state some results about the sequence

generated by an instance of the NE-HPE framework. We assume from now on that
such instance generates an infinite sequence of iterates, i.e., the instance does not
terminate in a finite number of steps and no termination criterion is checked. Since we
are not assuming that the distance generating function w is nondegenerate on Z , it is
not possible to establish convergence of the sequence {zk} generated by the NE-HPE
framework to a solution of (8). However, under some mild assumptions, it is possible
to establish that {zk} approaches a point z̃ ∈ T−1(0) if the proximity measure used is
the actual Bregman distance.

Proposition 3.5 Assume that for some infinite index set K and some z̃ ∈ Z , we have

lim
k→K

(rk, εk) = (0, 0), lim
k→K

z̃k = z̃. (18)

Then, z̃ ∈ T−1(0) ⊂ Z. If, in addition, limk∈K(dw)zk (z̃k) = 0, then limk→∞(dw)zk (z̃)
= 0.

Proof See the proof of Proposition 3.10 of [24]. ��
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Proposition 3.6 Assume that σ < 1,
∑∞

i=1 λ2k = ∞ and {z̃k} is bounded. Then, there
exists z̃ ∈ T−1(0) ⊂ Z such that

lim
k→∞(dw)zk (z̃) = lim

k→∞(dw)z̃k (z̃) = 0. (19)

Proof See the proof of Proposition 3.11 of [24] ��
Clearly, ifw is a nondegenerate distance generating function, then the results above

give sufficient conditions for the sequences {zk} and {z̃k} to converge to some z̃ ∈
T−1(0).

4 The relaxed Peaceman–Rachford splitting method

This section derives convergence rate bounds for the relaxed Peaceman–Rachford (PR)
splitting method for solving the monotone inclusion (1) under the assumption that A
and B are maximal β-strongly monotone operators for any β ≥ 0. More specifically,
its pointwise iteration-complexity is obtained in Theorem 4.6 and its ergodic iteration-
complexity is derived in Theorem 4.8. These results are obtained as by-products of
the corresponding ones (i.e, Theorems 3.3 and 3.4) in Sect. 3.2 and the fact that the
relaxed Peaceman–Rachford (PR) splittingmethod can be viewed as a special instance
of the NE-HPE framework.

Throughout this section, we assume that X a finite-dimensional real vector space
with inner product and associated inner product norm denoted by 〈·, ·〉X and ‖ · ‖X ,
respectively. For a given β ≥ 0, an operator T : X ⇒ X is said to be β-strongly
monotone if

〈w − w′, x − x ′〉X ≥ β‖x − x ′‖2X ∀(x, w), (x ′, w′) ∈ Gr(T ).

In what follows, we refer to monotone operators as 0-strongly monotone operators.
This terminology has the benefit of allowing us to treat both themonotone and strongly
monotone case simultaneously.

Throughout this section, we consider the monotone inclusion (1) where A, B :
X ⇒ X satisfy the following assumptions:

(B0) for some β ≥ 0, A and B are maximal β-strongly monotone operators;
(B1) the solution set (A + B)−1(0) is non-empty.

We start by observing that (1) is equivalent to solving the following augmented
system of inclusions/equation

0 ∈ γ A(u) + u − x,

0 ∈ γ B(v) + x − v,

0 = u − v

where γ > 0 is an arbitrary scalar. Another way of writing the above system is as

0 ∈ γ A(u) + u − x,
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0 ∈ γ B(v) + v + x − 2u,

0 = u − v.

Note that the first and second inclusions are equivalent to

u = u(x) := Jγ A(x), v = v(x) := Jγ B(2u − x) = Jγ B(2Jγ A(x) − x) (20)

so that the third equation reduces to

0 = u(x) − v(x) = Jγ A(x) − Jγ B(2Jγ A(x) − x).

The Douglas–Rachford (DR) splitting method is the iterative procedure xk = xk−1 +
v(xk−1)−u(xk−1), k ≥ 1, started from some x0 ∈ X . It is known that the DR splitting
method is an exact proximal point method for some maximal monotone operator
[13,14]. Hence, convergence of its sequence of iterates is guaranteed.

This section is concerned with a natural generalization of the DR splitting method,
namely, the relaxed Peaceman–Rachford (PR) splittingmethodwith relaxation param-
eter θ > 0, which iterates as

(uk, vk) := (u(xk−1), v(xk−1)) xk = xθ
k := xk−1 + θ(vk − uk) ∀k ≥ 1. (21)

We now make a few remarks about the above method. First, it reduces to the DR
splitting method when θ = 1, and to the PR splitting method when θ = 2. Second, it
reduces to (2) when γ = 1 but it is not more general than (2) since (21) is equivalent
to (2) with (A, B) = (γ A, γ B). Third, as presented in (21), it can be viewed as an
iterative process in the (u, v, x)-space rather than only in the x-space as suggested
by (2).

Our analysis of the relaxed DR splitting method is based on further exploring the
last remark above, i.e., viewing it as an iterative method in the (u, v, x)-space. We
start by introducing an inclusion which plays an important role in our analysis. For a
fixed θ̃ > 0 and γ > 0, consider the inclusion

0 ∈ (Lθ̃ + γC)(z) (22)

where Lθ̃ : X × X × X → X × X × X is the linear map defined as

Lθ̃ (z) = Lθ̃ (u, v, x) :=
⎡

⎣
(1 − θ̃ )I θ̃ I −I
(θ̃ − 2)I (1 − θ̃ )I I

I −I 0

⎤

⎦

⎛

⎝
u
v

x

⎞

⎠ (23)

and C : X × X × X ⇒ X × X × X is the maximal monotone operator defined as

C(z) = C(u, v, x) := A(u) × B(v) × {0}. (24)

It is easy to verify that the inclusion (22) is equivalent to the two systems of inclu-
sions/equation following conditions B0 andB1. Hence, it suffices to solve (22) in order
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to solve (1). The following simple but useful result explicitly show the relationship
between the solution sets of (22) and (1).

Lemma 4.1 For any θ̃ > 0, the solution set (Lθ̃ + γC)−1(0) is given by

(Lθ̃ + γC)−1(0) = {(u∗, u∗, x∗) : γ −1(x∗ − u∗) ∈ A(u∗) ∩ (−B(u∗))}
= {(u∗, u∗, u∗ + γ a∗) : a∗ ∈ A(u∗),−a∗ ∈ B(u∗)}.

As a consequence, if z∗ = (u∗, u∗, x∗) ∈ (Lθ̃ + γC)−1(0), then u∗ ∈ (A + B)−1(0)
and u∗ = Jγ A(x∗).

Proof The conclusion of the lemma follows immediately from the definitions of Lθ̃

and C in (23) and (24), respectively, and some simple algebraic manipulations. ��
The key idea of our analysis is to show that the relaxed PR splitting method is actu-

ally a special instance of the NE-HPE framework for solving inclusion (22) and then
use the results discussed in Sect. 3.2 to derive convergence and iteration-complexity
results for it. With this goal in mind, the next result gives a sufficient condition for
(22) to be a maximal monotone inclusion.

Proposition 4.2 Assume that A, B : X ⇒ X satisfy B0 and let θ̃ > 0 be given. Then,

(a) for every z = (u, v, x) ∈ X × X × X , z′ = (u′, v′, x ′) ∈ X × X × X , r ∈
(Lθ̃ + γC)(z) and r ′ ∈ (Lθ̃ + γC)(z′), we have

〈Lθ̃ (z − z′), z − z′) = (1 − θ̃ )‖(u − u′) − (v − v′)‖2X (25)

〈r − r ′, z − z′〉 ≥ (1 − θ̃ )‖(u − u′) − (v − v′)‖2X
+ γβ(‖u − u′‖2X + ‖v − v′‖2X ); (26)

(b) Lθ̃ + γC is maximal monotone whenever θ̃ ∈ (0, θ0] where

θ0 := 1 + γβ

2
. (27)

Proof (a) Identity (25) follows from the definition of Lθ̃ in (23). To show inequality
(26), assume that r ∈ (Lθ̃ +γC)(z) and r ′ ∈ (Lθ̃ +γC)(z′). Then, r = Lθ̃ (z)+γ c
and r ′ = Lθ̃ (z) + γ c′ for some c ∈ C(z) and c′ ∈ C(z′). Using the definition of
C and assumption B0, we easily see that

〈c′ − c, z′ − z〉 ≥ β(‖u − u′‖2X + ‖v − v′‖2X ),

which together with (25), and the fact that r = Lθ̃ (z)+γ c and r ′ = Lθ̃ (z)+γ c′,
imply (26).

(b) Monotonicity of Lθ̃ + γC is due to the fact that the right hand side of (26) is
nonnegative for every (u, v), (u′, v′) ∈ X × X whenever θ̃ ∈ (0, θ0]. To show
Lθ̃ + γC is maximal monotone, write Lθ̃ + γC = (Lθ̃ + γ C̄) + γ (C − C̄)
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where C̄ := β(I, I, 0). As a consequence of (a) with (A, B) = β(I, I ) and the
definition ofC , we conclude thatLθ̃ +γ C̄ is a monotone linear operator for every
θ̃ ∈ (0, θ0]. Moreover, Assumption B0 easily implies that γ (C − C̄) is maximal
monotone. The statement now follows by noting that the sum of amonotone linear
map and a maximal monotone operator is a maximal monotone operator [1,28].

��
Note that θ0 in (27) depends on γ and β and that θ0 = 1 when β = 0.
The following technical result states some useful identities and inclusions needed

to analyze the the sequence generated by the relaxed PR splitting method.

Lemma 4.3 For a given xk−1 ∈ X and θ̃ > 0, define

x̃k = x θ̃
k := xk−1 + θ̃ (vk − uk), z̃k = zθ̃k := (uk, vk, x̃k) (28)

where uk, vk are as in (21), and set

ak := 1

γ
(xk−1 − uk), bk := 1

γ
(2uk − vk − xk−1). (29)

Then, we have:

− (1 − θ̃ )uk − θ̃vk + x̃k = γ ak ∈ γ A(uk), (30)

(2 − θ̃ )uk − (1 − θ̃ )vk − x̃k = γ bk ∈ γ B(vk). (31)

As a consequence, we have

uk − vk = γ (ak + bk) ∈ γ A(uk) + γ B(vk) (32)

(0, 0, uk − vk) = Lθ̃ (z̃k) + γ ck ∈ (Lθ̃ + γC)(z̃k) (33)

where
ck := (ak, bk, 0). (34)

Proof Using the definition of (u(·), v(·)) in (20), the definition of (uk, vk, x θ̃
k ) in

(21), and the definitions of ak and bk in (29), we easily see that (30) and (31) hold.
The equality and the inclusion in (32) follow by adding (30) and (31). Clearly, (33)
follows as an immediate consequence of (30) and (31), definitions (23) and (24), and
the definition of ck . ��

The following result shows that the relaxed PR splitting method with θ ∈ (0, 2θ0]
can be viewed as an inexact instance of the NE-HPE framework for solving (22) where
from now on we assume that

θ̃ := min{θ, θ0}. (35)

Proposition 4.4 Consider the (degenerate) distance generating function given by

w(z) = w(u, v, x) = ‖x‖2X
2θ

∀z = (u, v, x) ∈ X × X × X (36)
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and the sequence {zk = (uk, vk, xk)} generated according to the relaxed PR splitting
method (21) with any θ > 0. Also, define the sequences {εk}, {λk} and {rk} as

εk := 0, λk := 1, rk := ∇(dw)zk (zk−1) ∀k ≥ 1, (37)

and the sequence {z̃k = (uk, vk, x̃k)} as in (28) with θ̃ given by (35). Then, for every
k ≥ 1, we have:

(a) rk = (0, 0, xk−1 − xk)/θ = (0, 0, uk − vk) = γ (0, 0, ak + bk);
(b) (λk, zk−1) and (zk, z̃k, εk) satisfy (9) with T = Lθ̃ +γC, i.e., rk ∈ (Lθ̃ +γC)(z̃k);
(c) (λk, zk−1) and (zk, z̃k, εk) satisfy (10) with σ = (θ/θ̃ − 1)2 and w as in (36).

As a consequence, the relaxed PR splitting method with θ ∈ (0, 2θ0) (resp., θ = 2θ0)
is an NE-HPE instance with respect to the monotone inclusion 0 ∈ (Lθ̃ + γC)(z) in
which σ < 1 (resp., σ = 1), εk = 0 and λk = 1 for every k.

Proof (a) The first identity in (a) follows from (36) and the definition of rk in (37).
The second and third equalities in (a) are due to the second identity in (21) and
relation (32), respectively.

(b) This statement follows from (a) and (33).
(c) Using the second identity in (21), relation (36) and the definition of x̃k in (28),

we conclude that for any θ ∈ (0, 2θ0],

(dw)zk (z̃k) = ‖x̃k − xk‖2X
2θ

=
(

θ

θ̃
− 1

)2 ‖x̃k − xk−1‖2X
2θ

=
(

θ

θ̃
− 1

)2

(dw)zk−1(z̃k)

and hence that (10) is satisfied with σ = (1 − θ/θ̃)2.
The last conclusion follows from statements (b) and (c), and Proposition 4.2(b).

��
We now make a remark about the special case of Proposition 4.4 in which θ ∈

(0, θ0]. Indeed, in this case, θ̃ = θ , and hence σ = 0 and z̃k = zk for every k ≥ 1.
Thus, the relaxed PR splitting method with θ ∈ (0, θ0] can be viewed as an exact
non-Euclidean proximal point method with distance generating function w as in (36)
with respect to the monotone inclusion 0 ∈ T (z) := (Lθ + γC)(z). Note also that the
latter inclusion depends on θ .

As a consequence of Proposition 4.4, we are now ready to describe the pointwise
and ergodic convergence rate for the relaxed PR splitting method. We first endow
the space Z := X × X × X with the semi-norm ‖(u, v, x)‖ := ‖x‖X and hence
Proposition 2.1 implies that

‖(0, 0, x)‖∗ = ‖x‖X . (38)

It is also easy to see that the distance generating function w defined in (36) is in
DZ (m, M) with respect to ‖ · ‖ where M = m = 1/θ (see Definition 3.1).
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Our next goal is to state a pointwise convergence rate bound for the relaxed PR
splitting method. We start by stating a technical result which is well-known for the
case where β = 0 (see for example Lemma 2.4 of [18]). The proof for the general case,
i.e., β ≥ 0, is similar and is given in the “Appendix” for the sake of completeness.

Lemma 4.5 Assume that θ ∈ (0, 2θ0]. Then, for every k ≥ 2, we have ‖�xk‖X ≤
‖�xk−1‖X where �xk := xk − xk−1.

We now state the pointwise convergence rate result for the relaxed PR splitting
method.

Theorem 4.6 Consider the sequence {zk = (uk, vk, xk)} generated by the relaxed PR
splitting method with θ ∈ (0, 2θ0). Then, for every k ≥ 1 and z∗ = (u∗, u∗, x∗) ∈
(Lθ̃ + γC)−1(0),

ak + bk ∈ A(uk) + B(vk), γ ‖ak + bk‖X = ‖uk − vk‖X ≤
√
2‖x0 − x∗‖X√
k
√
2θ̃ − θ

.

Proof The inclusion and the equality in the theorem follows from (32). Since by
Proposition 4.4, the relaxed PR splitting method with θ ∈ (0, 2θ0) is an NE-HPE
instance for solving the monotone inclusion 0 ∈ (Lθ̃ + γC)(z) in which σ = (θ/θ̃ −
1)2 < 1, εk = 0 and λk = 1 for all k ≥ 1, it follows from Lemma 4.5, Theorem 3.3,
the fact that M = m = 1/θ , and relation (12) that

‖rk‖∗ ≤
√
2M√
m

(1 + √
σ)

√√√√ (dw)0

1 − σ

(
1

∑k
j=1 λ2j

)

≤
√
2‖x0 − x∗‖X√
k
√
2θ̃ − θ

.

The inequality of the theorem then follows by Proposition 4.4(a) and relation (38). ��
Our main goal in the remaining part of this section is to derive ergodic convergence

rate bounds for the relaxed PR splitting method for any θ ∈ (0, 2θ0]. We start by
stating the following variation of the transportation lemma for maximal β-strongly
monotone operators.

Proposition 4.7 Assume that T is a maximal β-strongly monotone operator for some
β ≥ 0. Assume also that ti ∈ T (ui ) for i = 1, . . . , k, and define

t̄k = 1

k

k∑

i=1

ti , ūk = 1

k

k∑

i=1

ui , εk = 1

k

k∑

i=1

〈ti − βui , ui − ūk〉X (39)

Then, εk ≥ 0 and t̄k ∈ T [εk ](ūk).

Proof The assumption that T is a maximal β-strongly monotone operator implies that
T −β I is maximal monotone. Hence, it follows from the weak transportation formula
(see Theorem2.3 of [5]) applied to T−β I that εk ≥ 0 and t̄k−βūk ∈ (T−β I )[εk ](ūk).
The result then follows by observing that (T − β I )[εk ](ūk) + βūk ⊆ T [εk ](ūk). ��
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In order to state the ergodic iteration complexity bound for the relaxed PR splitting
method, we introduce the ergodic sequences

ūk = 1

k

k∑

i=1

ui , v̄k = 1

k

k∑

i=1

vi , āk = 1

k

k∑

i=1

ai , b̄k = 1

k

k∑

i=1

bi (40)

and the scalar sequences

ε′
k := 1

k

k∑

i=1

〈ai − βui , ui − ūk〉X , ε′′
k := 1

k

k∑

i=1

〈bi − βvi , vi − v̄k〉X . (41)

Theorem 4.8 Assume that θ ∈ (0, 2θ0] and consider the ergodic sequences above.
Then, for every k ≥ 1 and z∗ = (u∗, u∗, x∗) ∈ (Lθ̃ + γC)−1(0),

āk ∈ A[ε′
k ](ūk), b̄k ∈ B[ε′′

k ](v̄k),

γ
∥
∥āk + b̄k

∥
∥X = ‖ūk − v̄k‖X ≤ 2‖x0 − x∗‖X

kθ
,

ε′
k + ε′′

k ≤ 3(1 + 2(1 − θ̃/θ)2)‖x0 − x∗‖2X
kγ θ

.

Proof The first two inclusions follow from the two inclusions in (30) and (31), relation
(40), Assumption B0 and Proposition 4.7. We will now derive the equality and the two
inequalities of the theorem using the fact that the relaxed PR splitting method with
θ ∈ (0, 2θ0] is an instance of the NE-HPE method. Letting λk = 1, εk = 0 for every
k and z̃ak , r

a
k and εak be as in (14), we easily see from Proposition 4.4(a) and (40) that

rak = (0, 0, ūk − v̄k) = γ (0, 0, āk + b̄k), (42)

εak = 1

k

k∑

i=1

〈ri , z̃i − z̃ak 〉. (43)

We claim that
εak ≥ γ (ε′

k + ε′′
k ). (44)

Before proving this claim, we will use it to complete the proof of the theorem. Indeed,
using the definition of w in (36), relations (12), (38), (42) and (44), the conclusion of
Proposition 4.4, and Theorem 3.4 with T = Lθ̃ + γC , M = m = 1/θ and λk = 1 for
all k, we conclude that

γ
∥∥āk + b̄k

∥∥X = ‖ūk − v̄k‖X = ‖rak ‖∗ ≤ 2
√
2(dw)

1/2
0√

θ�k
≤ 2‖x0 − x∗‖X

kθ

and

γ (ε′
k + ε′′

k ) ≤ εak ≤ 3(2(dw)0 + ρk)

�k
≤ 3

(‖x0 − x∗‖2X + ρk
)

kθ
(45)
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where ρk is defined in (15).Moreover, using (15), the definition ofw in (36), the defini-
tion of xi and x̃i in (21) and (28), respectively, the triangle inequality, and Proposition
3.2(a), we conclude that

ρk := max
i=1,...,k

(dw)zi (z̃i ) = max
i=1,...,k

‖xi − x̃i‖2X
2θ

= (1 − θ̃/θ)2 max
i=1,...,k

‖xi − xi−1‖2X
2θ

≤ 2(1 − θ̃/θ)2‖x0 − x∗‖2X
θ

.

The inequalities of the theorem now follows from the above three relations.
In the remaining part of the proof, we establish our previous claim (44). By Propo-

sition 4.4(a) and relations (33) and (43), we have

kεak =
k∑

i=1

〈ri , z̃i − z̃ak 〉 =
k∑

i=1

〈Lθ̃ (z̃i ) + γ ci , z̃i − z̃ak 〉 (46)

where ci is defined in (34). Moreover, we have

k∑

i=1

〈Lθ̃ (z̃i ) + γ ci , z̃i − z̃ak 〉 =
k∑

i=1

〈Lθ̃ (z̃i − z̃ak ), z̃i − z̃ak 〉 + γ

k∑

i=1

〈ci , z̃i − z̃ak 〉

= (1 − θ̃ )

k∑

i=1

‖(ui − ūk) − (vi − v̄k)‖2X

+ γ

k∑

i=1

〈ci , z̃i − z̃ak 〉

≥ −γβ

2

k∑

i=1

‖(ui − ūk) − (vi − v̄k)‖2X

+ γ

k∑

i=1

〈ci , z̃i − z̃ak 〉, (47)

where the second equality follows from (25) and the definitions of z̃ak in (14), z̃k in
(28), and ūk and v̄k in (40), and the inequality follows from (27) and the fact that
θ̃ ≤ θ0 in view of (35). Finally, using the definitions of z̃ak in (14), and z̃i and ci in
Lemma 4.3, and the straightforward relation

−1

2

k∑

i=1

‖(ui − ūk) − (vi − v̄k)‖2X ≥ −
k∑

i=1

(〈ui , ui − ūk〉X + 〈vi , vi − v̄k〉X ) ,
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we conclude from (46) and (47) that

εak ≥ γ

k

k∑

i=1

(〈ai − βui , ui − ūk〉X + 〈bi − βvi , vi − v̄k〉X ),

and hence that the claim holds in view of (41). ��
We now make some remarks about the convergence rate bounds obtained in Theo-

rem 4.8. In view of Lemma 4.1, x∗ depends on γ according to

x∗ = γ a∗ + u∗, a∗ ∈ A(u∗) ∩ −B(u∗).

Hence, letting

d0 := inf{‖x0 − u∗‖X : u∗ ∈ (A + B)−1(0)},
S := sup{‖a∗‖ : a∗ ∈ A(u∗) ∩ −B(u∗), u∗ ∈ (A + B)−1(0)},

and assuming that S < ∞, it is easy to see that Theorem 4.8 and (27) imply that the
relaxed PR splitting method with θ = 2θ0 satisfies

∥∥āk + b̄k
∥∥X ≤ C1(γ )

γ k
, ‖ūk − v̄k‖X ≤ C1(γ )

k
, ε′

k + ε′′
k ≤ C2(γ )

k

where

C1(γ ) = C1(γ ;β, d0) = �

(
d0 + γ S

1 + βγ

)
,

C2(γ ) = C2(γ ;β, d0) = �

(
(d0 + γ S)2

γ (1 + βγ )

)
.

When S/β ≥ d0, then γ = d0/S minimizes both C1(·) and C2(·) up to a mul-
tiplicative constant, in which case C∗

1 = �(d0), C∗
1/γ = �(S) and C∗

2 = �(Sd0)
where

C∗
1 = C∗

1 (β, d0) := inf{C1(γ ) : γ > 0}, C∗
2 = C∗

2 (β, d0) := inf{C2(γ ) : γ > 0}.

Note that this case includes the case in which β = 0. On the other hand, when
S/β < d0, then both C1 and C2 are minimized up to a multiplicative constant by any
γ ≥ d0/S, in which case C∗

1 = �(S/β) and C∗
2 = �(S2/β). Clearly, in this case,

C∗
1/γ converges to zero as γ tends to infinity.
Indeed, assume first that S/β ≥ d0. Then, up to some multiplicative constants, we

have

C1(γ ) ≥ d0 + γ S

1 + βγ
≥ d0 + γ S

1 + Sγ /d0
= d0,
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C2(γ ) ≥ (d0 + γ S)2

γ (1 + βγ )
≥ (d0 + γ S)2

γ (1 + Sγ /d0)
= d0(d0 + γ S)

γ
= d20

γ
+ Sd0,

and hence that C∗
1 = �(d0) and C∗

2 = �(Sd0). Moreover, if γ = d0/S, then the
assumption S/β ≥ d0 implies that βγ ≤ 1, and hence that C∗

1 = �(d0) and C∗
2 =

�(Sd0).
Assume now that S/β < d0. Then, up to multiplicative constants, it is easy to see

that

C1(γ ) ≥ d0 + γ S

1 + βγ
≥ S

β

C2(γ ) ≥ (d0 + γ S)2

γ (1 + βγ )
≥ (S/β + γ S)2

γ (1 + βγ )
= S2

γβ2 (1 + γβ),

and hence that C∗
1 = �(S/β) and C∗

2 = �(S2/β). Moreover, if γ ≥ d0/S, then it is
easy to see that C∗

1 = �(S/β) and C∗
2 = �(S2/β).

Based on the above discussion, the choice γ = d0/S is optimal but has the disad-
vantage that d0 is generally difficult to compute. One possibility around this difficulty
is to use γ = D0/S where D0 is an upper bound on d0.

5 On the convergence of the relaxed PR splitting method

This section discusses some new convergence results about the sequence generated
by the relaxed PR splitting method for the case in which β > 0. It contains two
subsections. As observed in the Introduction, [12] already establishes the convergence
of the relaxed PR sequence for the case in which β ≥ 0 and θ < 2θ0. The first
subsection establishes convergence of the relaxed PR sequence for the case in which
β > 0 and θ = 2θ0. The second subsection describes an instance showing that the
relaxed PR spliting method may diverge when β ≥ 0 and θ ≥ min{2(1 + γβ), 2 +
γβ + 1/(γβ)}. (Here, we assume that 1/0 = ∞.) Note that this instance, specialized
to the case β = 0, shows that the sequence {zk = (uk, vk, xk)} generated by the
relaxed PR splitting method with β = 0 may diverge for any θ ≥ 2, and hence that
the convergence result obtained for any θ ∈ (0, 2) in [12] cannot be improved.

5.1 Convergence result about the relaxed PR sequence

It is known that the sequence {zk = (uk, vk, xk)} generated by the relaxed PR splitting
methodwith θ ∈ (0, 2θ0) andβ ≥ 0 converges [12]. Themain result of this subsection,
namely Theorem 5.2, establishes convergence of this sequence for θ = 2θ0 when
β > 0.

We start by giving a lemma which is used in the proof of Theorem 5.2.

Lemma 5.1 Consider the sequence {zk = (uk, vk, xk)} generated by the relaxed PR
splitting method with θ ∈ (0, 2θ0] and the sequence {z̃k = (uk, vk, x̃k)} defined in
(28). Then, the sequences {zk} and {z̃k} are bounded.
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Proof The assumption that θ ∈ (0, 2θ0] together with the last conclusion of Propo-
sition 4.4 imply that the relaxed PR splitting method is an NE-HPE instance with
σ ≤ 1. Hence, for any z∗ ∈ (Lθ̃ + γC)−1(0), it follows from Proposition 3.2(a)
that the sequence {(dw)zk (z

∗)} is non-increasing where w is the distance generating
function given by (36). Clearly, this observation implies that {xk} is bounded. This
conclusion together with (20) and the nonexpansiveness of Jγ A, Jγ B imply that {uk}
and {vk} are also bounded. Finally, {x̃k} is bounded due to the definition of x̃k in (28),
and the boundedness of {xk}, {uk} and {vk}. ��

As mentioned at the beginning of this subsection, the convergence of {(uk, vk)} to
some pair (u∗, u∗) where u∗ ∈ (A+ B)−1(0) has been established in [12] for the case
in which β > 0 and θ < 2θ0. The following result shows that the latter conclusion
can also be extended to θ = 2θ0.

Theorem 5.2 In addition to Assumption B1, assume that Assumption B0 holds with
β > 0. Then, the sequence {zk = (uk, vk, xk)} generated by the relaxed PR splitting
method with θ = 2θ0 converges to some point lying in (Lθ0 + γC)−1(0).

Proof We assume that θ = 2θ0 and without any loss of generality that γ = 1. In view
of (35), we have θ̃ = θ0. Let z∗ ∈ (Lθ0 + C)−1(0). Then, by Lemma 4.1, we have
z∗ = (u∗, u∗, x∗) where

u∗ = (A + B)−1(0), x∗ − u∗ ∈ A(u∗), −x∗ + u∗ ∈ B(u∗). (48)

Since θ̃ = θ0, it follows from Proposition 4.4(b) that rk ∈ (Lθ0 + C)(z̃k). This
together with the fact that 0 ∈ (Lθ0 + C)(z∗), inequality (26) with (z, r) = (z̃k, rk)
and (z′, r ′) = (z∗, 0), and the fact that θ0 = 1 + β/2, then imply that

〈rk, z̃k−z∗〉 ≥ (1 − θ0)‖(uk − u∗) − (vk − u∗)‖2X + β(‖uk − u∗‖2X + ‖vk − u∗‖2X )

= β

2
‖uk + vk − 2u∗‖2X ≥ 0. (49)

Since the last conclusion of Proposition 4.4 states that the relaxed PR splitting method
with θ = 2θ0 is an NE-HPE instance with respect to the monotone inclusion 0 ∈
(Lθ̃ + γC)(z) in which σ = 1, λk = 1 and εk = 0 for every k, it follows from
Proposition 3.2(b), (49) and the assumption that β > 0 that

lim
k→∞〈rk, z̃k − z∗〉 = lim

k→∞ ‖uk + vk − 2u∗‖X = 0. (50)

By Lemma 5.1, {zk}, and hence {xk}, is bounded. Therefore, there exist an infinite
index set K and x̄ ∈ X such that limk∈K xk−1 = x̄ , from which we conclude that

lim
k∈K

uk = ū := JA(x̄), lim
k∈K

vk = v̄ := JB(2ū − x̄) (51)

in view of (20), (21) and the continuity of the point-to-point maps JA and JB . Clearly,
relations (21), (50) and (51), Proposition 4.4(a), the definitions of JB following (2)
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and z̃k in (28), and the fact that θ̃ = θ0, imply that

ū + v̄ = 2u∗, 2ū − v̄ − x̄ ∈ B(v̄), lim
k∈K

zk = (ū, v̄, x̄ + θ(v̄ − ū)), (52)

lim
k∈K

rk = (0, 0, ū − v̄), lim
k∈K

z̃k = z̃ := (ū, v̄, x̄ + θ0(v̄ − ū)). (53)

Clearly, (50) and (53) imply that

0 = lim
k∈K

〈rk , z̃k − z∗〉 = 〈ū − v̄, x̄ + θ0(v̄ − ū) − x∗〉X = −θ0‖ū − v̄‖2X + 〈ū − v̄, x̄ − x∗〉X .

(54)

Using the second inclusion in (48), the identity and the inclusion in (52), the β-strong
monotonicity of B, and relation (54), we then conclude that

β

4
‖v̄ − ū‖2X = β‖v̄ − u∗‖2X ≤ 〈

(2ū − v̄ − x̄) − (u∗ − x∗), v̄ − u∗〉
X

= 1

2

〈
3

2
(ū − v̄) − x̄ + x∗, v̄ − ū

〉

X

= 1

2

〈
x̄ − x∗, ū − v̄

〉
X − 3

4
‖v̄ − ū‖2X =

(
θ0

2
− 3

4

)
‖v̄ − ū‖2X .

The latter inequality together with the fact that θ0 = 1 + (β/2) then imply that
ū = v̄ = u∗ where the last equality is due to the identity in (52). We have thus shown
that {uk}k∈K and {vk}k∈K both converge to u∗ = (A + B)−1(0). Since ū = v̄ = u∗,
it follows from (52) and (53) that

lim
k∈K

rk = 0, lim
k∈K

zk = lim
k∈K

z̃k = z̃ = (u∗, u∗, x̄),

lim
k∈K

(dw)zk (z̃k) = lim
k∈K

‖xk − x̃k‖2X /(2θ) = ‖x̄ − x̄‖2X /(2θ) = 0.

Hence, Proposition 3.5 with T = (Lθ0 + γC) implies that z̃ ∈ (Lθ0 + γC)−1(0)
and 0 = limk→∞(dw)zk (z̃) = limk→∞ ‖x̄ − xk‖2X /(2θ). We thus conclude that {zk}
converges to (u∗, u∗, x̄) = z̃ ∈ (Lθ0 + γC)−1(0). ��

Before ending this subsection, we make two remarks. First, for a fixed τ > 0,
consider the set

R(τ ) := {(β, θ) ∈ R
2 : β > 0, 0 < θ ≤ 2 + τβ}.

Then, it follows from Theorem 5.2 and the observation in the paragraph preceding
it that the sequence generated by the relaxed PR splitting method with relaxation
parameter θ to solve (1) with A, B maximal β-strongly monotone converges for any
(β, θ) ∈ R(1). Second, it follows from the example presented in the next subsection
that the above conclusion fails if R(1) is enlarged to the region R(τ ) for any τ > 1.
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5.2 Non-convergent instances for θ ≥ min{2 + 2γβ, 2 + γβ + 1/(γβ)}

By [12] and Theorem 5.2, the sequence {xk} generated by the relaxed PR splitting
method converges whenever either θ ∈ (0, 2 + γβ) or θ = 2 + γβ and β > 0. This
subsection gives an instance of (1), where A, B are maximal β-strongly monotone, for
which the sequence {xk} generated by the relaxed PR splitting method with relaxation
parameter θ does not convergewhenβ ≥ 0 and θ ≥ min{2(1+γβ), 2+γβ+1/(γβ)}.

Recall from (20) and (21) that the relaxed PR splitting method iterates as

xk+1 = xk + θ(Jγ B(2Jγ A(xk) − xk) − Jγ A(xk)) (55)

where θ > 0. Without any loss of generality, we assume that γ = 1 in (55).
Wenowdescribe our instance. First, letX := X̃×X̃ where X̃ is a finite-dimensional

real vector space, and let A0, B0 : X ⇒ X be defined as

A0(x̃1, x̃2) = (0, 0), B0(x̃1, x̃2) = N{0}(x̃1) × {0}, ∀x = (x̃1, x̃2) ∈ X̃ × X̃

where N{0}(·) denotes the normal cone operator of the set {0}. Clearly, A0 and B0 are
both maximal monotone operators and

JA0(x̃1, x̃2) = (x̃1, x̃2), JB0(x̃1, x̃2) = (0, x̃2), ∀x = (x̃1, x̃2) ∈ X̃ × X̃ .

Now define A := A0 + β I and B := B0 + β̄ I where β̄ ≥ β ≥ 0. It follows that A
is a β-strongly maximal monotone operator and B is a β̄-strongly maximal monotone
operator. Hence, the instance we are describing is slightly more general in that A and
B have different strong monotonicity parameters.

Moreover, for any x = (x̃1, x̃2) ∈ X , it is easy to see that

JA(x) = J 1
1+β

A0

(
1

1 + β
(x̃1, x̃2)

)
= 1

1 + β
(x̃1, x̃2),

JB(x) = J 1
1+β

B0

(
1

1 + β̄
(x̃1, x̃2)

)
= 1

1 + β̄
(0, x̃2).

and hence that

x + θ [JB(2JA(x) − x) − JA(x)] =
(

(1 + β − θ)

1 + β
x̃1,

[
1 − (β + β̄)θ

(1 + β)(1 + β̄)

]
x̃2

)
.

(56)

From (55) and (56), we easily see that the sequence {xk} generated by the relaxed
PR splitting method diverges whenever

(1 + β − θ)

1 + β
≤ −1, or 1 − (β + β̄)θ

(1 + β)(1 + β̄)
≤ −1,
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or equivalently, whenever

θ ≥ min

{
2(1 + β) , 2 + 2(1 + ββ̄)

β + β̄

}
.

Note thatwhenβ = β̄, the above inequality reduces to θ ≥ min{2(1+β), 2+β+1/β}.
Before ending this subsection, we make two remarks. First, when β = 0 and hence

A is not strongly monotone, the sequence {xk} for the above example diverges for
any θ ≥ 2 even if B is strongly monotone, i.e., β̄ > 0. Second, the above example
specialized to the case in which β = β̄ easily shows that the sequence generated by
the relaxed PR splitting method does not necessarily converge for any (β, θ) ∈ R(τ )

if τ > 1 where R(τ ) is defined at the end of Sect. 5.1.

6 Numerical study

This section illustrates the behavior of the relaxed PR splitting method for solving the
weighted Lasso minimization problem [16] (see also [6])

min
u∈Rn

f (u) + g(u), (57)

where f (u) := 1
2‖Cu − b‖2X and g(u) := ‖Wu‖1 for every u ∈ R

n . Our numerical
experiments consider instances where n = 200, b ∈ R

300 and C ∈ R
300×200 is a

sparse data matrix with an average of 10 nonzero entries per row. Each component of
b and each nonzero element ofC is drawn from aGaussian distributionwith zeromean
and unit variance, while W ∈ R

200×200 is a diagonal matrix with positive diagonal
elements drawn from a uniform distribution on the interval [0, 1]. This setup follows
that of [16]. Note that X = R

300 and ‖ · ‖1 is the 1-norm on R
200. Observe that f

is α-strongly convex1 on R
200 where α = λmin(CTC) is the minimum eigenvalue

of CTC . Also, f is differentiable and its gradient is κ-Lipschitz continuous on R
200

where κ = λmax(CTC) is the maximum eigenvalue of CTC . The function g is clearly
convex on R

200.
We consider solving (57) by apply the relaxed PR splitting method (55) to solve

the inclusion (1) with

A = ∂ f − α′ I, B = ∂g + α′ I, (58)

where 0 ≤ α′ ≤ α = λmin(CTC). Since A (resp., B) is (α − α′)-strongly (resp., α′-
strongly) maximal monotone, the results developed in Sects. 4 and 5 for the relaxed PR
splitting method with (A, B) as above applies with β = min{α − α′, α′}. Our goal in
this section is to gain some intuition of how the relaxed PR splitting method performs
as α′ (and hence β), γ and θ change. In our numerical experiments, we start the relaxed
PR splitting algorithm with x0 = 0 and terminate it when ‖xk+1 − xk‖X ≤ 10−5. The
paragraphs below report the results of three experiments.

1 A function f is α-strongly convex on X if f − α
2 ‖ · ‖2X is convex on X .
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Table 1 Average number of iterations performed by the relaxed PR splitting method (55) to solve (57)
based on the partition (A, B) given by (58) for 4 pairs (γ, α′) and 6 different values of θ

θ Average number of iterations

γ = 1 γ = 1/
√

ακ

α′ = 0 α′ = α/2 α′ = 0 α′ = α/2

1 141.79 140.64 60.10 60.11

1.25 115.96 115.06 48.47 48.48

1.50 98.31 97.48 40.51 40.49

1.75 85.33 84.64 34.67 34.70

2 264.80 75.08 58.54 42.11

2 + γα/2 > 500 73.25 74.73 49.60

In the first experiment, we generate 100 random instances of (C,W, b) and we
observed that the condition λmin(CTC) > 0 holds for all instances. The relaxed PR
splittingmethod is used to solve these instances of (57) for various values of θ andwith
the pair (γ, α′) taking on the values (1, 0), (1, α/2), (1/

√
ακ, 0) and (1/

√
ακ, α/2).

Note that it follows from Proposition 3 of [16] that when α′ = 0 and θ = 2, the choice
of γ = 1/

√
ακ has been shown to be optimal for the relaxed PR splitting method.

Our results are shown in Table 1. We see from the table that, except when θ = 2
and θ = 2 + γα/2, the average number of iterations for α′ = 0 and α′ = α/2 are
similar. However, when θ = 2 and θ = 2 + γα/2, the choice α′ = α/2 outperforms
the one with α′ = 0. One possible explanation for this behavior is due to the fact
that when θ = 2 and θ = 2 + γα/2, the relaxed PR sequence converges when both
operators are strongly monotone, while it does not necessary converge when either
one of the operators is only monotone. Note also that the results in the last row of the
table confirm the convergence result of the relaxed PR splitting method (see Theorem
5.2) for the case in which A and B are β-strongly maximal monotone operators with
β > 0 and θ = 2 + γβ. Finally, our results (the last two rows of table) suggest that,
if A is maximal α-strongly monotone and B is only maximal monotone, it might be
advantageous to use the relaxed PR splitting method with 0 < α′ < α (and hence
β > 0) instead of α′ = 0 (and hence β = 0).

In our second experiment, we use relaxed PR splitting method with (θ, γ ) equal
to (2, 1) and (2, 1/

√
ακ), and with α′ varying from 0 to α, to solve (57) for a

randomly generated (C,W, b). In this instance, α = λmin(CTC) = 0.3792 and
κ = λmax(CTC) = 57.6624. Our results are shown in Fig. 1. We see from Fig. 1
that the number of iterations decreases as α′ increases in both cases. These graphs
again suggest that it might be advantageous to have A and B maximal β-strongly
monotone with β > 0. We also observe that as α′ approaches α, the number of itera-
tions does not increase even though the operator A is losing its strong monotonicity.

In our third experiment, we performed the same numerical experiments as the
ones mentioned above but with (A, B) = (∂g + α′ I, ∂ f − α′ I ) instead of (A, B) =
(∂ f − α′ I, ∂g + α′ I ) and note that the results obtained were very similar to the ones

123



R. D. C. Monteiro, C.-K. Sim

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
50

100

150

200

250

300

N
um

be
r o

f I
te

ra
tio

ns
Graph of Number of Iterations as 

 varies when  = 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
30

35

40

45

50

55

60

N
um

be
r o

f I
te

ra
tio

ns

Graph of Number of Iterations as 
 varies when  = (1/ )1/2

(A) (B)

Fig. 1 Two graphs showing how the number of iterations performed by (55) changes with varying α′ using
the partition (A, B) given (58)

Table 2 Summary of convergence rate results for the relaxed PR splittingmethod on the sum of two convex
functions f, g

Convergence Additional conditions on f, g
besides convexity

θ Rate Type References

(0, 2) O(1/
√
k) Pointwise [18] −

(0, 2) o(1/
√
k) Pointwise [10] −

(0, 2] O(1/k) Ergodic [10] −
(0, 2) o(1/k) Best iterate [11] ∇ f or ∇g Lipschitz

1, 2 − R-linear [22] f strongly convex and ∇ f
Lipschitz

(0, 2) − R-linear [15] g strongly convex and ∇ f
Lipschitz

(0, 2] − R-linear [11] ( f or g strongly convex) and
(∇ f or ∇g Lipschitz)

(0, 2] − R-linear [12] ( f or g strongly convex) and
∇ f Lipschitz

(0, 4
1+δ

) δ ∈ (0, 1) − R-linear [16] (resp., [15]) f (resp., g) strongly convex
and ∇ f (resp., ∇g)
Lipschitz

reported above. Hence interchanging A and B in the implementation of the relaxed
PR splitting method have little impact on its performance.

7 Concluding remarks

This paper establishes convergence of the sequence of iterates and anO(1/k) ergodic
convergence rate bound for the relaxed PR splitting method for any θ ∈ (0, 2 + γβ]
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Table 3 Summary of convergence rate results for the relaxed PR splitting method on the sum of two
β-strongly convex functions f, g, with β > 0

Convergence Additional conditions on f, g
besides strong convexity

θ Rate Type References

(0, 2 + γβ) O(1/
√
k) Pointwise This paper −

(0, 2 + γβ] O(1/k) Ergodic This paper −
(0, 2] − R-linear [12] ∇ f Lipschitz

by viewing it as an instance of a non-Euclidean HPE framework. It also establishes
an O(1/

√
k) pointwise convergence rate bound for it for any θ ∈ (0, 2 + γβ). Fur-

thermore, an example showing that PR iterates do not necessarily converge for β ≥ 0
and θ ≥ min{2(1 + γβ), 2 + γβ + 1/(γβ)} is given.

Table 2 (resp., Table 3) for the case in which β = 0 (resp., β > 0) provides a
summary of the convergence rate results known so far for the relaxed PR splitting
method when (A, B) = (∂ f, ∂g) for some convex functions f and g. However, we
observe that some of these results also hold for pairs (A, B) of maximal monotone
operatorswhich are not subdifferentials. The term “R-linear” in the tables below stands
for linear convergence of the sequence {xk} generated by the relaxed PR splitting
method.

We observe that our analysis in Sects. 4 and 5, in contrast to the ones in [11,15,
16,22], does not impose any regularity condition on A and B such as assuming one
of them to be a Lipschitz, and hence point-to-point, operator. Also, if only one of the
operators, say A, is assumed to be maximal β-strongly monotone, (1) is equivalent to
0 ∈ (A′ +B ′)(u)where A′ := A−(β/2)I and B ′ := B+(β/2)I are now both (β/2)-
strongly monotone. Thus, to solve (1), the relaxed PR method with (A, B) replaced
by (A′, B ′) can be applied, thereby ensuring convergence of the iterates, as well as
pointwise and ergodic convergence rate bounds, for values of θ ≥ 2. This idea was
tested in our computational results of Sect. 6 where a weighted Lasso minimization
problem [6] is solved using the partitions (A, B) and (A′, B ′). Our conclusion is that
the partition (A′, B ′) substantially outperforms the other one for values of θ ≥ 2.
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Appendix

Proof of Lemma 4.5 To simplify notation, let

�x = �xk, �x− := �xk−1, �u = uk − uk−1,

�v = vk − vk−1, �a = ak − ak−1, �b = bk − bk−1.

Then, it follows from the second identity in (21) and relation (29) that

�x = �x− + θ(�v − �u), γ�a = �x− − �u, γ�b = 2�u − �v − �x−.

(59)

Also, the two inclusions in (30) and (31) together with the β-strong monotonicity of
A and B imply that

〈�a,�u〉X ≥ β‖�u‖2X , 〈�b,�v〉X ≥ β‖�v‖2X .

Combining the last two identities in (59) with the above inequalities, we obtain

〈�x− − �u,�u〉X ≥ γβ‖�u‖2X , 〈2�u − �v − �x−,�v〉X ≥ γβ‖�v‖2X .

Adding these two last inequalities and simplifying the resulting expression, we obtain

〈�x−,�u − �v〉X + 2〈�u,�v〉X ≥ (1 + γβ)[‖�u‖2X + ‖�v‖2X ] (60)

From the first equality in (59), we have

2θ〈�x−,�u − �v〉X = ‖�x−‖2X − ‖�x‖2X + θ2‖�v − �u‖2X ,

which upon substituting into (60), the following is true:

‖�x−‖2X − ‖�x‖2X ≥ 2θ

([
1 + γβ − θ

2

]
(‖�u‖2X + ‖�v‖2X )

+ 2

[
θ

2
− 1

]
〈�u,�v〉X

)
.

Note that the right-hand side in the above inequality is greater than or equal to zero if
θ ∈ (0, 2θ0]. Hence, we have if θ ∈ (0, 2θ0],

‖�x‖X ≤ ‖�x−‖X .

��
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