5 research outputs found

    The Creation of a Biophysical Modeling Universe: The UNIfied and VERSatile bio response Engine

    Get PDF
    Radiotherapy is a crucial pillar of cancer therapy and ion beams promise superior dose conformity and potentially enhanced biological effectiveness in comparison to conventional radiation modalities. However, several factors are known to modify the biological effect of radiation. The capability to model their impact within a unified description of radiation action in conventional and ion beam fields would greatly enhance the ability to prescribe the optimal treatment and improve the knowledge of underlying mechanisms. To this end, the initial developments of the mechanistic UNIfied and VERSatile bio response Engine (UNIVERSE) are presented in this work. The effects of radiosensitizing drugs and mutations as well as DNA repair kinetics were modeled for each radiation quality. For sparsely ionizing radiation, the sparing effects at ultra-high dose-rates (uHDR) applied in FLASH radiotherapy were introduced based on oxygen depletion rates approaching measured values. Benchmarks against own or literature data are presented for each development. Challenges concerning the transition of oxygen and uHDR effects to ion beams as well as the vision of personalized biomarker-based patient plan adaptation based on UNIVERSE are discussed. UNIVERSE offers clinically relevant insights into radiobiological interdependencies and its versatility will allow it to follow future trends in radiotherapy

    GSI Scientific Report 2009 [GSI Report 2010-1]

    Get PDF
    Displacement design response spectrum is an essential component for the currently-developing displacement-based seismic design and assessment procedures. This paper proposes a new and simple method for constructing displacement design response spectra on soft soil sites. The method takes into account modifications of the seismic waves by the soil layers, giving due considerations to factors such as the level of bedrock shaking, material non-linearity, seismic impedance contrast at the interface between soil and bedrock, and plasticity of the soil layers. The model is particularly suited to applications in regions with a paucity of recorded strong ground motion data, from which empirical models cannot be reliably developed

    GSI Scientific Report 2009 [GSI Report 2010-1]

    Get PDF

    GSI Scientific Report 2010 [GSI Report 2011-1]

    Get PDF

    GSI Scientific Report 2008 [GSI Report 2009-1]

    Get PDF
    corecore