1,203 research outputs found

    Accelerated Training of Max-Margin Markov Networks with Kernels

    Full text link
    Abstract. Structured output prediction is an important machine learn-ing problem both in theory and practice, and the max-margin Markov network (M3N) is an effective approach. All state-of-the-art algorithms for optimizing M3N objectives take at least O(1/) number of iterations to find an accurate solution. [1] broke this barrier by proposing an excessive gap reduction technique (EGR) which converges in O(1/ iterations. However, it is restricted to Euclidean projections which con-sequently requires an intractable amount of computation for each iter-ation when applied to solve M3N. In this paper, we show that by ex-tending EGR to Bregman projection, this faster rate of convergence can be retained, and more importantly, the updates can be performed effi-ciently by exploiting graphical model factorization. Further, we design a kernelized procedure which allows all computations per iteration to be performed at the same cost as the state-of-the-art approaches.

    Integrated Inference and Learning of Neural Factors in Structural Support Vector Machines

    Get PDF
    Tackling pattern recognition problems in areas such as computer vision, bioinformatics, speech or text recognition is often done best by taking into account task-specific statistical relations between output variables. In structured prediction, this internal structure is used to predict multiple outputs simultaneously, leading to more accurate and coherent predictions. Structural support vector machines (SSVMs) are nonprobabilistic models that optimize a joint input-output function through margin-based learning. Because SSVMs generally disregard the interplay between unary and interaction factors during the training phase, final parameters are suboptimal. Moreover, its factors are often restricted to linear combinations of input features, limiting its generalization power. To improve prediction accuracy, this paper proposes: (i) Joint inference and learning by integration of back-propagation and loss-augmented inference in SSVM subgradient descent; (ii) Extending SSVM factors to neural networks that form highly nonlinear functions of input features. Image segmentation benchmark results demonstrate improvements over conventional SSVM training methods in terms of accuracy, highlighting the feasibility of end-to-end SSVM training with neural factors

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Deep Structured Models for Large Scale Object Co-detection and Segmentation

    Get PDF
    Structured decisions are often required for a large variety of image and scene understanding tasks in computer vision, with few of them being object detection, localization, semantic segmentation and many more. Structured prediction deals with learning inherent structure by incorporating contextual information from several images and multiple tasks. However, it is very challenging when dealing with large scale image datasets where performance is limited by high computational costs and expressive power of the underlying representation learning techniques. In this thesis, we present efficient and effective deep structured models for context-aware object detection, co-localization and instance-level semantic segmentation. First, we introduce a principled formulation for object co-detection using a fully-connected conditional random field (CRF). We build an explicit graph whose vertices represent object candidates (instead of pixel values) and edges encode the object similarity via simple, yet effective pairwise potentials. More specifically, we design a weighted mixture of Gaussian kernels for class-specific object similarity, and formulate kernel weights estimation as a least-squares regression problem. Its solution can therefore be obtained in closed-form. Furthermore, in contrast with traditional co-detection approaches, it has been shown that inference in such fully-connected CRFs can be performed efficiently using an approximate mean-field method with high-dimensional Gaussian filtering. This lets us effectively leverage information in multiple images. Next, we extend our class-specific co-detection framework to multiple object categories. We model object candidates with rich, high-dimensional features learned using a deep convolutional neural network. In particular, our max-margin and directloss structural boosting algorithms enable us to learn the most suitable features that best encode pairwise similarity relationships within our CRF framework. Furthermore, it guarantees that the time and space complexity is O(n t) where n is the total number of candidate boxes in the pool and t the number of mean-field iterations. Moreover, our experiments evidence the importance of learning rich similarity measures to account for the contextual relations across object classes and instances. However, all these methods are based on precomputed object candidates (or proposals), thus localization performance is limited by the quality of bounding-boxes. To address this, we present an efficient object proposal co-generation technique that leverages the collective power of multiple images. In particular, we design a deep neural network layer that takes unary and pairwise features as input, builds a fully-connected CRF and produces mean-field marginals as output. It also lets us backpropagate the gradient through entire network by unrolling the iterations of CRF inference. Furthermore, this layer simplifies the end-to-end learning, thus effectively benefiting from multiple candidates to co-generate high-quality object proposals. Finally, we develop a multi-task strategy to jointly learn object detection, localization and instance-level semantic segmentation in a single network. In particular, we introduce a novel representation based on the distance transform of the object masks. To this end, we design a new residual-deconvolution architecture that infers such a representation and decodes it into the final binary object mask. We show that the predicted masks can go beyond the scope of the bounding boxes and that the multiple tasks can benefit from each other. In summary, in this thesis, we exploit the joint power of multiple images as well as multiple tasks to improve generalization performance of structured learning. Our novel deep structured models, similarity learning techniques and residual-deconvolution architecture can be used to make accurate and reliable inference for key vision tasks. Furthermore, our quantitative and qualitative experiments on large scale challenging image datasets demonstrate the superiority of the proposed approaches over the state-of-the-art methods
    corecore