3,673 research outputs found

    Accelerated Probabilistic Learning Concept for Mining Heterogeneous Earth Observation Images

    Get PDF
    We present an accelerated probabilistic learning concept and its prototype implementation for mining heterogeneous Earth observation images, e.g., multispectral images, synthetic aperture radar (SAR) images, image time series, or geographical information systems (GIS) maps. The system prototype combines, at pixel level, the unsupervised clustering results of different features, extracted from heterogeneous satellite images and geographical information resources, with user-defined semantic annotations in order to calculate the posterior probabilities that allow the final probabilistic searches. The system is able to learn different semantic labels based on a newly developed Bayesian networks algorithm and allows different probabilistic retrieval methods of all semantically related images with only a few user interactions. The new algorithm reduces the computational cost, overperforming existing conventional systems, under certain conditions, by several orders of magnitude. The achieved speed-up allows the introduction of new feature models improving the learning capabilities of knowledge-driven image information mining systems and opening them to Big Data environment

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Survey on Selection of Features for Content Based Image Retrieval in Image Mining

    Get PDF
    Image mining is the process of searching and discovering valuable information and knowledge in large volumes of data. It is a challenging field which extends traditional data mining from structured data to unstructured data such as image data. Image Mining is focused on extracting patterns, implicit knowledge, image data relationship or patterns which are not explicitly found in the images from databases or collections of images. The actual data analysis techniques suffer from the huge amount of complex data to process. So, in order to process this huge amount of data, efficient extraction of features is much more important. This paper presents a survey on various feature extraction techniques for image mining that were proposed earlier in literature. Also, this paper provides a marginal overview for future research and improvements

    Pathway to a fully data-driven geotechnics: lessons from materials informatics

    Full text link
    This paper elucidates the challenges and opportunities inherent in integrating data-driven methodologies into geotechnics, drawing inspiration from the success of materials informatics. Highlighting the intricacies of soil complexity, heterogeneity, and the lack of comprehensive data, the discussion underscores the pressing need for community-driven database initiatives and open science movements. By leveraging the transformative power of deep learning, particularly in feature extraction from high-dimensional data and the potential of transfer learning, we envision a paradigm shift towards a more collaborative and innovative geotechnics field. The paper concludes with a forward-looking stance, emphasizing the revolutionary potential brought about by advanced computational tools like large language models in reshaping geotechnics informatics

    Next Generation of Product Search and Discovery

    Get PDF
    Online shopping has become an important part of people’s daily life with the rapid development of e-commerce. In some domains such as books, electronics, and CD/DVDs, online shopping has surpassed or even replaced the traditional shopping method. Compared with traditional retailing, e-commerce is information intensive. One of the key factors to succeed in e-business is how to facilitate the consumers’ approaches to discover a product. Conventionally a product search engine based on a keyword search or category browser is provided to help users find the product information they need. The general goal of a product search system is to enable users to quickly locate information of interest and to minimize users’ efforts in search and navigation. In this process human factors play a significant role. Finding product information could be a tricky task and may require an intelligent use of search engines, and a non-trivial navigation of multilayer categories. Searching for useful product information can be frustrating for many users, especially those inexperienced users. This dissertation focuses on developing a new visual product search system that effectively extracts the properties of unstructured products, and presents the possible items of attraction to users so that the users can quickly locate the ones they would be most likely interested in. We designed and developed a feature extraction algorithm that retains product color and local pattern features, and the experimental evaluation on the benchmark dataset demonstrated that it is robust against common geometric and photometric visual distortions. Besides, instead of ignoring product text information, we investigated and developed a ranking model learned via a unified probabilistic hypergraph that is capable of capturing correlations among product visual content and textual content. Moreover, we proposed and designed a fuzzy hierarchical co-clustering algorithm for the collaborative filtering product recommendation. Via this method, users can be automatically grouped into different interest communities based on their behaviors. Then, a customized recommendation can be performed according to these implicitly detected relations. In summary, the developed search system performs much better in a visual unstructured product search when compared with state-of-art approaches. With the comprehensive ranking scheme and the collaborative filtering recommendation module, the user’s overhead in locating the information of value is reduced, and the user’s experience of seeking for useful product information is optimized

    A Critical Evaluation of a Self-Driving Laboratory for the Optimization of Electrodeposited Earth-Abundant Mixed-Metal Oxide Catalysts for the Oxygen Evolution Reaction (OER)

    Full text link
    This work highlights the potential of earth-abundant mixed-metal oxide catalysts for the acid-based oxygen evolution reaction. These catalysts offer numerous combinations of metal-centre compositions, which can enhance catalytic activity and stability compared to precious-metal-based catalysts commonly used today. Despite substantial research in this field, there is a need for new methods and approaches to accelerate the exploration of these materials. In this study, we present a comprehensive approach to designing, developing, and implementing a self-driving laboratory to optimize the electrodeposition synthesis of amorphous mixed-metal oxide catalysts for the acidic oxygen evolution reaction. We particularly emphasize the development of methodologies to address experimental variability. We investigate crucial parameters and considerations when transitioning from manual bench-top synthesis and evaluation to automation and machine learning guided optimization. We address both experimental and optimization algorithm considerations in the presence of experimental variability. To illustrate our approach, we demonstrate the optimization of CoFeMnPbOx electrodeposited catalyst materials through multiple campaigns. Our results highlight considerations for optimizing overpotential and stability based on the outcomes of our experiments.Comment: 46 pages, 8 main body figures, 11 supporting information figure

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science
    • …
    corecore