10,493 research outputs found

    Accelerated Backpressure Algorithm

    Full text link
    We develop an Accelerated Back Pressure (ABP) algorithm using Accelerated Dual Descent (ADD), a distributed approximate Newton-like algorithm that only uses local information. Our construction is based on writing the backpressure algorithm as the solution to a network feasibility problem solved via stochastic dual subgradient descent. We apply stochastic ADD in place of the stochastic gradient descent algorithm. We prove that the ABP algorithm guarantees stable queues. Our numerical experiments demonstrate a significant improvement in convergence rate, especially when the packet arrival statistics vary over time.Comment: 9 pages, 4 figures. A version of this work with significantly extended proofs is being submitted for journal publicatio

    Multi-consensus Decentralized Accelerated Gradient Descent

    Full text link
    This paper considers the decentralized optimization problem, which has applications in large scale machine learning, sensor networks, and control theory. We propose a novel algorithm that can achieve near optimal communication complexity, matching the known lower bound up to a logarithmic factor of the condition number of the problem. Our theoretical results give affirmative answers to the open problem on whether there exists an algorithm that can achieve a communication complexity (nearly) matching the lower bound depending on the global condition number instead of the local one. Moreover, the proposed algorithm achieves the optimal computation complexity matching the lower bound up to universal constants. Furthermore, to achieve a linear convergence rate, our algorithm \emph{doesn't} require the individual functions to be (strongly) convex. Our method relies on a novel combination of known techniques including Nesterov's accelerated gradient descent, multi-consensus and gradient-tracking. The analysis is new, and may be applied to other related problems. Empirical studies demonstrate the effectiveness of our method for machine learning applications

    An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

    Get PDF
    Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient \textbf{A}ccelerated \textbf{D}ecentralized stochastic algorithm for \textbf{F}inite \textbf{S}ums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On nn machines, ADFS learns from nmnm samples in the same time it takes optimal algorithms to learn from mm samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples mm, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.Comment: Code available in source files. arXiv admin note: substantial text overlap with arXiv:1901.0986
    • …
    corecore