We develop an Accelerated Back Pressure (ABP) algorithm using Accelerated
Dual Descent (ADD), a distributed approximate Newton-like algorithm that only
uses local information. Our construction is based on writing the backpressure
algorithm as the solution to a network feasibility problem solved via
stochastic dual subgradient descent. We apply stochastic ADD in place of the
stochastic gradient descent algorithm. We prove that the ABP algorithm
guarantees stable queues. Our numerical experiments demonstrate a significant
improvement in convergence rate, especially when the packet arrival statistics
vary over time.Comment: 9 pages, 4 figures. A version of this work with significantly
extended proofs is being submitted for journal publicatio