2 research outputs found

    IBIA: An Incremental Build-Infer-Approximate Framework for Approximate Inference of Partition Function

    Full text link
    Exact computation of the partition function is known to be intractable, necessitating approximate inference techniques. Existing methods for approximate inference are slow to converge for many benchmarks. The control of accuracy-complexity trade-off is also non-trivial in many of these methods. We propose a novel incremental build-infer-approximate (IBIA) framework for approximate inference that addresses these issues. In this framework, the probabilistic graphical model is converted into a sequence of clique tree forests (SCTF) with bounded clique sizes. We show that the SCTF can be used to efficiently compute the partition function. We propose two new algorithms which are used to construct the SCTF and prove the correctness of both. The first is an algorithm for incremental construction of CTFs that is guaranteed to give a valid CTF with bounded clique sizes and the second is an approximation algorithm that takes a calibrated CTF as input and yields a valid and calibrated CTF with reduced clique sizes as the output. We have evaluated our method using several benchmark sets from recent UAI competitions and our results show good accuracies with competitive runtimes

    Abstraction Sampling in Graphical Models

    No full text
    We present a new sampling scheme for approximating hard to compute queries over graphical models, such as computing the partition function. The scheme builds upon exact algorithms that traverse a weighted directed state-space graph representing a global function over a graphical model (e.g., probability distribution). With the aid of an abstraction function and randomization, the state space can be compacted (trimmed) to facilitate tractable computation, yielding a Monte Carlo estimate that is unbiased. We present the general idea and analyze its properties analytically and empirically
    corecore