9,607 research outputs found

    Assume-Guarantee Abstraction Refinement for Probabilistic Systems

    Full text link
    We describe an automated technique for assume-guarantee style checking of strong simulation between a system and a specification, both expressed as non-deterministic Labeled Probabilistic Transition Systems (LPTSes). We first characterize counterexamples to strong simulation as "stochastic" trees and show that simpler structures are insufficient. Then, we use these trees in an abstraction refinement algorithm that computes the assumptions for assume-guarantee reasoning as conservative LPTS abstractions of some of the system components. The abstractions are automatically refined based on tree counterexamples obtained from failed simulation checks with the remaining components. We have implemented the algorithms for counterexample generation and assume-guarantee abstraction refinement and report encouraging results.Comment: 23 pages, conference paper with full proof

    An expectation transformer approach to predicate abstraction and data independence for probabilistic programs

    Full text link
    In this paper we revisit the well-known technique of predicate abstraction to characterise performance attributes of system models incorporating probability. We recast the theory using expectation transformers, and identify transformer properties which correspond to abstractions that yield nevertheless exact bound on the performance of infinite state probabilistic systems. In addition, we extend the developed technique to the special case of "data independent" programs incorporating probability. Finally, we demonstrate the subtleness of the extended technique by using the PRISM model checking tool to analyse an infinite state protocol, obtaining exact bounds on its performance

    Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

    Get PDF
    This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well

    Magnifying Lens Abstraction for Stochastic Games with Discounted and Long-run Average Objectives

    Full text link
    Turn-based stochastic games and its important subclass Markov decision processes (MDPs) provide models for systems with both probabilistic and nondeterministic behaviors. We consider turn-based stochastic games with two classical quantitative objectives: discounted-sum and long-run average objectives. The game models and the quantitative objectives are widely used in probabilistic verification, planning, optimal inventory control, network protocol and performance analysis. Games and MDPs that model realistic systems often have very large state spaces, and probabilistic abstraction techniques are necessary to handle the state-space explosion. The commonly used full-abstraction techniques do not yield space-savings for systems that have many states with similar value, but does not necessarily have similar transition structure. A semi-abstraction technique, namely Magnifying-lens abstractions (MLA), that clusters states based on value only, disregarding differences in their transition relation was proposed for qualitative objectives (reachability and safety objectives). In this paper we extend the MLA technique to solve stochastic games with discounted-sum and long-run average objectives. We present the MLA technique based abstraction-refinement algorithm for stochastic games and MDPs with discounted-sum objectives. For long-run average objectives, our solution works for all MDPs and a sub-class of stochastic games where every state has the same value

    MeGARA: Menu-based Game Abstraction and Abstraction Refinement of Markov Automata

    Full text link
    Markov automata combine continuous time, probabilistic transitions, and nondeterminism in a single model. They represent an important and powerful way to model a wide range of complex real-life systems. However, such models tend to be large and difficult to handle, making abstraction and abstraction refinement necessary. In this paper we present an abstraction and abstraction refinement technique for Markov automata, based on the game-based and menu-based abstraction of probabilistic automata. First experiments show that a significant reduction in size is possible using abstraction.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Probabilistic Guarantees for Safe Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning has been successfully applied to many control tasks, but the application of such agents in safety-critical scenarios has been limited due to safety concerns. Rigorous testing of these controllers is challenging, particularly when they operate in probabilistic environments due to, for example, hardware faults or noisy sensors. We propose MOSAIC, an algorithm for measuring the safety of deep reinforcement learning agents in stochastic settings. Our approach is based on the iterative construction of a formal abstraction of a controller's execution in an environment, and leverages probabilistic model checking of Markov decision processes to produce probabilistic guarantees on safe behaviour over a finite time horizon. It produces bounds on the probability of safe operation of the controller for different initial configurations and identifies regions where correct behaviour can be guaranteed. We implement and evaluate our approach on agents trained for several benchmark control problems
    • ā€¦
    corecore