397 research outputs found

    Abstract Error Groups Via Jones Unitary Braid Group Representations at q=i

    Full text link
    In this paper, we classify a type of abstract groups by the central products of dihedral groups and quaternion groups. We recognize them as abstract error groups which are often not isomorphic to the Pauli groups in the literature. We show the corresponding nice error bases equivalent to the Pauli error bases modulo phase factors. The extension of these abstract groups by the symmetric group are finite images of the Jones unitary representations (or modulo a phase factor) of the braid group at q=i or r=4. We hope this work can finally lead to new families of quantum error correction codes via the representation theory of the braid group.Comment: 12 page

    Classical simulation of Yang-Baxter gates

    Get PDF
    A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B n for every n2n \ge 2. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., d=2d = 2) solutions, and some simple families that include solutions for arbitrary d2d \ge 2. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting.Comment: 17 pages. Corrected error in proof of Theorem

    Anyons in Geometric Models of Matter

    Get PDF
    We show that the "geometric models of matter" approach proposed by the first author can be used to construct models of anyon quasiparticles with fractional quantum numbers, using 4-dimensional edge-cone orbifold geometries with orbifold singularities along embedded 2-dimensional surfaces. The anyon states arise through the braid representation of surface braids wrapped around the orbifold singularities, coming from multisections of the orbifold normal bundle of the embedded surface. We show that the resulting braid representations can give rise to a universal quantum computer.Comment: 22 pages LaTe

    Braid Matrices and Quantum Gates for Ising Anyons Topological Quantum Computation

    Full text link
    We study various aspects of the topological quantum computation scheme based on the non-Abelian anyons corresponding to fractional quantum hall effect states at filling fraction 5/2 using the Temperley-Lieb recoupling theory. Unitary braiding matrices are obtained by a normalization of the degenerate ground states of a system of anyons, which is equivalent to a modification of the definition of the 3-vertices in the Temperley-Lieb recoupling theory as proposed by Kauffman and Lomonaco. With the braid matrices available, we discuss the problems of encoding of qubit states and construction of quantum gates from the elementary braiding operation matrices for the Ising anyons model. In the encoding scheme where 2 qubits are represented by 8 Ising anyons, we give an alternative proof of the no-entanglement theorem given by Bravyi and compare it to the case of Fibonacci anyons model. In the encoding scheme where 2 qubits are represented by 6 Ising anyons, we construct a set of quantum gates which is equivalent to the construction of Georgiev.Comment: 25 pages, 13 figure

    Simulation of topological field theories by quantum computers

    Get PDF
    Quantum computers will work by evolving a high tensor power of a small (e.g. two) dimensional Hilbert space by local gates, which can be implemented by applying a local Hamiltonian H for a time t. In contrast to this quantum engineering, the most abstract reaches of theoretical physics has spawned topological models having a finite dimensional internal state space with no natural tensor product structure and in which the evolution of the state is discrete, H = 0. These are called topological quantum filed theories (TQFTs). These exotic physical systems are proved to be efficiently simulated on a quantum computer. The conclusion is two-fold: 1. TQFTs cannot be used to define a model of computation stronger than the usual quantum model BQP. 2. TQFTs provide a radically different way of looking at quantum computation. The rich mathematical structure of TQFTs might suggest a new quantum algorithm

    Quantum Knitting

    Get PDF
    We analyze the connections between the mathematical theory of knots and quantum physics by addressing a number of algorithmic questions related to both knots and braid groups. Knots can be distinguished by means of `knot invariants', among which the Jones polynomial plays a prominent role, since it can be associated with observables in topological quantum field theory. Although the problem of computing the Jones polynomial is intractable in the framework of classical complexity theory, it has been recently recognized that a quantum computer is capable of approximating it in an efficient way. The quantum algorithms discussed here represent a breakthrough for quantum computation, since approximating the Jones polynomial is actually a `universal problem', namely the hardest problem that a quantum computer can efficiently handle.Comment: 29 pages, 5 figures; to appear in Laser Journa

    Topological Quantum Computation

    Get PDF
    The theory of quantum computation can be constructed from the abstract study of anyonic systems. In mathematical terms, these are unitary topological modular functors. They underlie the Jones polynomial and arise in Witten-Chern-Simons theory. The braiding and fusion of anyonic excitations in quantum Hall electron liquids and 2D-magnets are modeled by modular functors, opening a new possibility for the realization of quantum computers. The chief advantage of anyonic computation would be physical error correction: An error rate scaling like e^{-\a\l}, where \l is a length scale, and α\alpha is some positive constant. In contrast, the \qpresumptive" qubit-model of quantum computation, which repairs errors combinatorically, requires a fantastically low initial error rate (about 10410^{-4}) before computation can be stabilized

    Towards topological quantum computer

    Full text link
    One of the principal obstacles on the way to quantum computers is the lack of distinguished basis in the space of unitary evolutions and thus the lack of the commonly accepted set of basic operations (universal gates). A natural choice, however, is at hand: it is provided by the quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, distinguished from the points of view of group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Observables in this case are (square modules of) the knot polynomials, and their pronounced integrality properties could provide a key to error correction. We suggest to use R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, to build a topological version of quantum computing.Comment: 14 page
    corecore