21,697 research outputs found

    Towards modular verification of pathways: fairness and assumptions

    Full text link
    Modular verification is a technique used to face the state explosion problem often encountered in the verification of properties of complex systems such as concurrent interactive systems. The modular approach is based on the observation that properties of interest often concern a rather small portion of the system. As a consequence, reduced models can be constructed which approximate the overall system behaviour thus allowing more efficient verification. Biochemical pathways can be seen as complex concurrent interactive systems. Consequently, verification of their properties is often computationally very expensive and could take advantage of the modular approach. In this paper we report preliminary results on the development of a modular verification framework for biochemical pathways. We view biochemical pathways as concurrent systems of reactions competing for molecular resources. A modular verification technique could be based on reduced models containing only reactions involving molecular resources of interest. For a proper description of the system behaviour we argue that it is essential to consider a suitable notion of fairness, which is a well-established notion in concurrency theory but novel in the field of pathway modelling. We propose a modelling approach that includes fairness and we identify the assumptions under which verification of properties can be done in a modular way. We prove the correctness of the approach and demonstrate it on the model of the EGF receptor-induced MAP kinase cascade by Schoeberl et al.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Explicit fairness in testing semantics

    Get PDF
    In this paper we investigate fair computations in the pi-calculus. Following Costa and Stirling's approach for CCS-like languages, we consider a method to label process actions in order to filter out unfair computations. We contrast the existing fair-testing notion with those that naturally arise by imposing weak and strong fairness. This comparison provides insight about the expressiveness of the various `fair' testing semantics and about their discriminating power.Comment: 27 pages, 1 figure, appeared in LMC

    Using Indexed and Synchronous Events to Model and Validate Cyber-Physical Systems

    Full text link
    Timed Transition Models (TTMs) are event-based descriptions for modelling, specifying, and verifying discrete real-time systems. An event can be spontaneous, fair, or timed with specified bounds. TTMs have a textual syntax, an operational semantics, and an automated tool supporting linear-time temporal logic. We extend TTMs and its tool with two novel modelling features for writing high-level specifications: indexed events and synchronous events. Indexed events allow for concise description of behaviour common to a set of actors. The indexing construct allows us to select a specific actor and to specify a temporal property for that actor. We use indexed events to validate the requirements of a train control system. Synchronous events allow developers to decompose simultaneous state updates into actions of separate events. To specify the intended data flow among synchronized actions, we use primed variables to reference the post-state (i.e., one resulted from taking the synchronized actions). The TTM tool automatically infers the data flow from synchronous events, and reports errors on inconsistencies due to circular data flow. We use synchronous events to validate part of the requirements of a nuclear shutdown system. In both case studies, we show how the new notation facilitates the formal validation of system requirements, and use the TTM tool to verify safety, liveness, and real-time properties.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Analysing Mutual Exclusion using Process Algebra with Signals

    Get PDF
    In contrast to common belief, the Calculus of Communicating Systems (CCS) and similar process algebras lack the expressive power to accurately capture mutual exclusion protocols without enriching the language with fairness assumptions. Adding a fairness assumption to implement a mutual exclusion protocol seems counter-intuitive. We employ a signalling operator, which can be combined with CCS, or other process calculi, and show that this minimal extension is expressive enough to model mutual exclusion: we confirm the correctness of Peterson's mutual exclusion algorithm for two processes, as well as Lamport's bakery algorithm, under reasonable assumptions on the underlying memory model. The correctness of Peterson's algorithm for more than two processes requires stronger, less realistic assumptions on the underlying memory model.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004

    A Fixpoint Semantics of Event Systems with and without Fairness Assumptions

    Full text link
    We present a fixpoint semantics of event systems. The semantics is presented in a general framework without concerns of fairness. Soundness and completeness of rules for deriving "leads-to" properties are proved in this general framework. The general framework is instantiated to minimal progress and weak fairness assumptions and similar results are obtained. We show the power of these results by deriving sufficient conditions for "leads-to" under minimal progress proving soundness of proof obligations without reasoning over state-traces
    • …
    corecore