487,918 research outputs found

    Two-photon absorption in potassium niobate

    Full text link
    We report measurements of thermal self-locking of a Fabry-Perot cavity containing a potassium niobate (KNbO3) crystal. We develop a method to determine linear and nonlinear optical absorption coefficients in intracavity crystals by detailed analysis of the transmission lineshapes. These lineshapes are typical of optical bistability in thermally loaded cavities. For our crystal, we determine the one-photon absorption coefficient at 846 nm to be (0.0034 \pm 0.0022) per m and the two-photon absorption coefficient at 846 nm to be (3.2 \pm 0.5) \times 10^{-11} m/W and the one-photon absorption coefficient at 423 nm to be (13 \pm 2) per m. We also address the issue of blue-light-induced-infrared-absorption (BLIIRA), and determine a coefficient for this excited state absorption process. Our method is particularly well suited to bulk absorption measurements where absorption is small compared to scattering. We also report new measurements of the temperature dependence of the index of refraction at 846 nm, and compare to values in the literature.Comment: 8 pages. To appear in J. Opt. Soc. Am.

    Light absorption coefficient of an ordered array of spherical quantum dot chains

    Full text link
    We considered intersubband electron transitions in an array of one-dimensional chains of spherical quantum dots in the GaAs/Alx_{x}Ga1x_{1-x}As semiconductor system. The absorption coefficient caused by these transitions was calculated depending on frequency and polarization of incident light and on Fermi level position, and temperature. We established the existence of two maxima of the absorption coefficient at the edges of the absorption band. It is shown that the absorption coefficient reaches its maximal value at the center of the region between the ss-, pp-like subbands and slightly varies with temperature. The change of the direction of the linearly polarized light wave incident on the chains from perpendicular to parallel leads to a sharp narrowing of the absorption band. It is obtained that the absorption bandwidth increases with the reduction of the quantum dot radius. We also analyzed the dependence of the absorption coefficient of GaAs/Alx_{x}Ga1x_{1-x}As superlattice on concentration of aluminium in the matrix.Comment: 9 pages, 7 figure

    Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model

    Full text link
    An analytical nonadiabatic approach has been developed to study the dimerization gap and the optical absorption coefficient of the Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum phonons. By investigating quantitatively the effects of quantum phonon fluctuations on the gap order and the optical responses in this system, we show that the dimerization gap is much more reduced by the quantum lattice fluctuations than the optical absorption coefficient is. The calculated optical absorption coefficient and the density of states do not have the inverse-square-root singularity, but have a peak above the gap edge and there exist a significant tail below the peak. The peak of optical absorption spectrum is not directly corresponding to the dimerized gap. Our results of the optical absorption coefficient agree well with those of the experiments in both the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR

    AN INVESTIGATION OF THE POROUS SILICON OPTICAL-ABSORPTION POWER-LAW NEAR THE BAND-EDGE

    Get PDF
    A theoretical investigation of the absorption coefficient of p-type doped porous silicon near the band edge is presented. We assume that the absorption coefficient is constructed by taking an average over a distribution (in terms of band gap) of absorption coefficients of individual crystallites. Exploiting physics fundamental to the crystallite optical absorption process, we derive the relation between the absorption coefficient and the averaged conduction density of states near the band edge for porous silicon. By postulating a specific form for the effective conduction density of states we find excellent agreement with recent optical absorption data for p-type doped porous silicon. We attempt to explain the basis for this postulate phenomenologically by suggesting a certain large-scale behaviour of the particle size distribution. The implication of further experimental verification will be discussed

    Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals

    Get PDF
    The propagation of high-power femtosecond light pulses in lithium niobate crystals (LiNbO3) is investigated experimentally and theoretically in collinear pump-probe transmission experiments. It is found within a wide intensity range that a strong decrease of the pump transmission coefficient at wavelength 388 nm fully complies with the model of two-photon absorption; the corresponding nonlinear absorption coefficient is betap~=3.5 cm/GW. Furthermore, strong pump pulses induce a considerable absorption for the probe at 776 nm. The dependence of the probe transmission coefficient on the time delay Deltat between probe and pump pulses is characterized by a narrow dip (at Deltat~=0) and a long (on the picosecond time scale) lasting plateau. The dip is due to direct two-photon transitions involving pump and probe photons; the corresponding nonlinear absorption coefficient is betar~=0.9 cm/GW. The plateau absorption is caused by the presence of pump-excited charge carriers; the effective absorption cross section at 776 nm is sigmar~=8×10^–18 cm^2. The above nonlinear absorption parameters are not strongly polarization sensitive. No specific manifestations of the relaxation of hot carriers are found for a pulse duration of ~=0.24 ps

    The convolution theorem for nonlinear optics

    Full text link
    We have expressed the nonlinear optical absorption of a semiconductor in terms of its linear spectrum. We determined that the two-photon absorption coefficient in a strong DC-electric field of a direct gap semiconductor can be expressed as the product of a differential operator times the convolution integral of the linear absorption without a DC-electric field and an Airy function. We have applied this formalism to calculate the two-photon absorption coefficient and nonlinear refraction for GaAs and ZnSe using their linear absorption and have found excellent agreement with available experimental data.Comment: 8 pages, 2 figures (6 sub fugures
    corecore