5,885 research outputs found

    Geometry of Thermodynamic Processes

    Get PDF
    Since the 1970s contact geometry has been recognized as an appropriate framework for the geometric formulation of the state properties of thermodynamic systems, without, however, addressing the formulation of non-equilibrium thermodynamic processes. In Balian & Valentin (2001) it was shown how the symplectization of contact manifolds provides a new vantage point; enabling, among others, to switch between the energy and entropy representations of a thermodynamic system. In the present paper this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, which is overarching the locally defined metrics of Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold. The correspondence between objects in contact geometry and their homogeneous counterparts in symplectic geometry, as already largely present in the literature, appears to be elegant and effective. This culminates in the definition of port-thermodynamic systems, and the formulation of interconnection ports. The resulting geometric framework is illustrated on a number of simple examples, already indicating its potential for analysis and control.Comment: 23 page

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feelÂż like a physical equivalent system

    Maxwell Demon from a Quantum Bayesian Networks Perspective

    Full text link
    We propose a new inequality that we call the conditional ageing inequality (CAIN). The CAIN is a slight generalization to non-equilibrium situations of the Second Law of thermodynamics. The goal of this paper is to study the consequences of the CAIN. We use the CAIN to discuss Maxwell demon processes (i.e., thermodynamic processes with feedback.) In particular, we apply the CAIN to four cases of the Szilard engine: for a classical or a quantum system with either one or two correlated particles. Besides proposing this new inequality that we call the CAIN, another novel feature of this paper is that we use quantum Bayesian networks for our analysis of Maxwell demon processes.Comment: 30 pages (6 files: 1 .tex, 2 .sty, 3 .eps

    Directed Chaotic Transport in Hamiltonian Ratchets

    Full text link
    We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic transport in the absence of an average force. We discuss general conditions for such directed transport, like a mixed classical phase space, and elucidate a sum rule that relates the contributions of different phase-space components to transport with each other. We show that regular ratchet transport can be directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems. For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a semiclassical expression for the distribution of level velocities which encode the quantum transport in the Floquet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.Comment: 22 page

    The energy–momentum method for the stability of non-holonomic systems

    Get PDF
    In this paper we analyze the stability of relative equilibria of nonholonomic systems (that is, mechanical systems with nonintegrable constraints such as rolling constraints). In the absence of external dissipation, such systems conserve energy, but nonetheless can exhibit both neutrally stable and asymptotically stable, as well as linearly unstable relative equilibria. To carry out the stability analysis, we use a generalization of the energy-momentum method combined with the Lyapunov-Malkin theorem and the center manifold theorem. While this approach is consistent with the energy-momentum method for holonomic systems, it extends it in substantial ways. The theory is illustrated with several examples, including the the rolling disk, the roller racer, and the rattleback top
    • …
    corecore