238 research outputs found

    Parsing of Spoken Language under Time Constraints

    Get PDF
    Spoken language applications in natural dialogue settings place serious requirements on the choice of processing architecture. Especially under adverse phonetic and acoustic conditions parsing procedures have to be developed which do not only analyse the incoming speech in a time-synchroneous and incremental manner, but which are able to schedule their resources according to the varying conditions of the recognition process. Depending on the actual degree of local ambiguity the parser has to select among the available constraints in order to narrow down the search space with as little effort as possible. A parsing approach based on constraint satisfaction techniques is discussed. It provides important characteristics of the desired real-time behaviour and attempts to mimic some of the attention focussing capabilities of the human speech comprehension mechanism.Comment: 19 pages, LaTe

    Algebraic geometry over algebraic structures II: Foundations

    Full text link
    In this paper we introduce elements of algebraic geometry over an arbitrary algebraic structure. We prove Unification Theorems which gather the description of coordinate algebras by several ways.Comment: 55 page

    Fermionic Matrix Models

    Get PDF
    We review a class of matrix models whose degrees of freedom are matrices with anticommuting elements. We discuss the properties of the adjoint fermion one-, two- and gauge invariant D-dimensional matrix models at large-N and compare them with their bosonic counterparts which are the more familiar Hermitian matrix models. We derive and solve the complete sets of loop equations for the correlators of these models and use these equations to examine critical behaviour. The topological large-N expansions are also constructed and their relation to other aspects of modern string theory such as integrable hierarchies is discussed. We use these connections to discuss the applications of these matrix models to string theory and induced gauge theories. We argue that as such the fermionic matrix models may provide a novel generalization of the discretized random surface representation of quantum gravity in which the genus sum alternates and the sums over genera for correlators have better convergence properties than their Hermitian counterparts. We discuss the use of adjoint fermions instead of adjoint scalars to study induced gauge theories. We also discuss two classes of dimensionally reduced models, a fermionic vector model and a supersymmetric matrix model, and discuss their applications to the branched polymer phase of string theories in target space dimensions D>1 and also to the meander problem.Comment: 139 pages Latex (99 pages in landscape, two-column option); Section on Supersymmetric Matrix Models expanded, additional references include

    A convergent algorithm for solving linear programs with an additional reverse convex constraint

    Get PDF

    Complete hierarchies of efficient approximations to problems in entanglement theory

    Full text link
    We investigate several problems in entanglement theory from the perspective of convex optimization. This list of problems comprises (A) the decision whether a state is multi-party entangled, (B) the minimization of expectation values of entanglement witnesses with respect to pure product states, (C) the closely related evaluation of the geometric measure of entanglement to quantify pure multi-party entanglement, (D) the test whether states are multi-party entangled on the basis of witnesses based on second moments and on the basis of linear entropic criteria, and (E) the evaluation of instances of maximal output purities of quantum channels. We show that these problems can be formulated as certain optimization problems: as polynomially constrained problems employing polynomials of degree three or less. We then apply very recently established known methods from the theory of semi-definite relaxations to the formulated optimization problems. By this construction we arrive at a hierarchy of efficiently solvable approximations to the solution, approximating the exact solution as closely as desired, in a way that is asymptotically complete. For example, this results in a hierarchy of novel, efficiently decidable sufficient criteria for multi-particle entanglement, such that every entangled state will necessarily be detected in some step of the hierarchy. Finally, we present numerical examples to demonstrate the practical accessibility of this approach.Comment: 14 pages, 3 figures, tiny modifications, version to be published in Physical Review
    corecore