7,403 research outputs found

    About Projections of Solutions for Fuzzy Differential Equations

    Get PDF
    In this paper we propose the concept of fuzzy projections on subspaces of , obtained from Zadeh's extension of canonical projections in , and we study some of the main properties of such projections. Furthermore, we will review some properties of fuzzy projection solution of fuzzy differential equations. As we will see, the concept of fuzzy projection can be interesting for the graphical representation of fuzzy solutions

    A U(3)U(3) Gauge Theory on Fuzzy Extra Dimensions

    Get PDF
    In this article, we explore the low energy structure of a U(3)U(3) gauge theory over spaces with fuzzy sphere(s) as extra dimensions. In particular, we determine the equivariant parametrization of the gauge fields, which transform either invariantly or as vectors under the combined action of SU(2)SU(2) rotations of the fuzzy spheres and those U(3)U(3) gauge transformations generated by SU(2)U(3)SU(2) \subset U(3) carrying the spin 11 irreducible representation of SU(2)SU(2). The cases of a single fuzzy sphere SF2S_F^2 and a particular direct sum of concentric fuzzy spheres, SF2IntS_F^{2 \, Int}, covering the monopole bundle sectors with windings ±1\pm 1 are treated in full and the low energy degrees of freedom for the gauge fields are obtained. Employing the parametrizations of the fields in the former case, we determine a low energy action by tracing over the fuzzy sphere and show that the emerging model is abelian Higgs type with U(1)×U(1)U(1) \times U(1) gauge symmetry and possess vortex solutions on R2{\mathbb R}^2, which we discuss in some detail. Generalization of our formulation to the equivariant parametrization of gauge fields in U(n)U(n) theories is also briefly addressed.Comment: 27+1 page

    Multiple M0-brane system in an arbitrary eleven dimensional supergravity background

    Full text link
    The equations of motion of multiple M0{brane (multiple M-wave or mM0) system in an arbitrary D = 11 supergravity superspace, which generalize the Matrix model equations for the case of inter- action with a generic 11D supergravity background, are obtained in the frame of superembedding approach. We also derive the BPS equations for supersymmetric bosonic solutions of these mM0 equations and show that the set of 1/2 BPS solutions contain a fuzzy sphere modeling M2 brane as well as that the Nahm equation appears as a particular case of the 1/4 BPS equations.Comment: RevTeX4, 20 pages, no figures. V2: misprints corrected, minor changes, published in Phys. Rev. D82, 105030 (2010)). V3. Dec. 2011 : misprints in coeffs of Eqs.(5.10) correcte

    Matrix Quantum Mechanics and Soliton Regularization of Noncommutative Field Theory

    Full text link
    We construct an approximation to field theories on the noncommutative torus based on soliton projections and partial isometries which together form a matrix algebra of functions on the sum of two circles. The matrix quantum mechanics is applied to the perturbative dynamics of scalar field theory, to tachyon dynamics in string field theory, and to the Hamiltonian dynamics of noncommutative gauge theory in two dimensions. We also describe the adiabatic dynamics of solitons on the noncommutative torus and compare various classes of noncommutative solitons on the torus and the plane.Comment: 70 pages, 4 figures; v2: References added and update

    Twisted submanifolds of R^n

    Full text link
    We propose a general procedure to construct noncommutative deformations of an embedded submanifold MM of Rn\mathbb{R}^n determined by a set of smooth equations fa(x)=0f^a(x)=0. We use the framework of Drinfel'd twist deformation of differential geometry of [Aschieri et al., Class. Quantum Gravity 23 (2006), 1883]; the commutative pointwise product is replaced by a (generally noncommutative) \star-product determined by a Drinfel'd twist. The twists we employ are based on the Lie algebra Ξt\Xi_t of vector fields that are tangent to all the submanifolds that are level sets of the faf^a; the twisted Cartan calculus is automatically equivariant under twisted tangent infinitesimal diffeomorphisms. We can consistently project a connection from the twisted Rn\mathbb{R}^n to the twisted MM if the twist is based on a suitable Lie subalgebra eΞt\mathfrak{e}\subset\Xi_t. If we endow Rn\mathbb{R}^n with a metric then twisting and projecting to the normal and tangent vector fields commute, and we can project the Levi-Civita connection consistently to the twisted MM, provided the twist is based on the Lie subalgebra ke\mathfrak{k}\subset\mathfrak{e} of the Killing vector fields of the metric; a twisted Gauss theorem follows, in particular. Twisted algebraic manifolds can be characterized in terms of generators and polynomial relations. We present in some detail twisted cylinders embedded in twisted Euclidean R3\mathbb{R}^3 and twisted hyperboloids embedded in twisted Minkowski R3\mathbb{R}^3 [these are twisted (anti-)de Sitter spaces dS2,AdS2dS_2,AdS_2].Comment: Latex file, 48 pages, 1 figure. Slightly adapted version to the new preprint arXiv:2005.03509, where the present framework is specialized to quadrics and other algebraic submanifolds of R^n. Several typos correcte

    Trefftz Difference Schemes on Irregular Stencils

    Full text link
    The recently developed Flexible Local Approximation MEthod (FLAME) produces accurate difference schemes by replacing the usual Taylor expansion with Trefftz functions -- local solutions of the underlying differential equation. This paper advances and casts in a general form a significant modification of FLAME proposed recently by Pinheiro & Webb: a least-squares fit instead of the exact match of the approximate solution at the stencil nodes. As a consequence of that, FLAME schemes can now be generated on irregular stencils with the number of nodes substantially greater than the number of approximating functions. The accuracy of the method is preserved but its robustness is improved. For demonstration, the paper presents a number of numerical examples in 2D and 3D: electrostatic (magnetostatic) particle interactions, scattering of electromagnetic (acoustic) waves, and wave propagation in a photonic crystal. The examples explore the role of the grid and stencil size, of the number of approximating functions, and of the irregularity of the stencils.Comment: 28 pages, 12 figures; to be published in J Comp Phy
    corecore