4,978 research outputs found

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    A method for incremental discovery of financial event types based on anomaly detection

    Full text link
    Event datasets in the financial domain are often constructed based on actual application scenarios, and their event types are weakly reusable due to scenario constraints; at the same time, the massive and diverse new financial big data cannot be limited to the event types defined for specific scenarios. This limitation of a small number of event types does not meet our research needs for more complex tasks such as the prediction of major financial events and the analysis of the ripple effects of financial events. In this paper, a three-stage approach is proposed to accomplish incremental discovery of event types. For an existing annotated financial event dataset, the three-stage approach consists of: for a set of financial event data with a mixture of original and unknown event types, a semi-supervised deep clustering model with anomaly detection is first applied to classify the data into normal and abnormal events, where abnormal events are events that do not belong to known types; then normal events are tagged with appropriate event types and abnormal events are reasonably clustered. Finally, a cluster keyword extraction method is used to recommend the type names of events for the new event clusters, thus incrementally discovering new event types. The proposed method is effective in the incremental discovery of new event types on real data sets.Comment: 11 pages,4 figure
    • …
    corecore