127 research outputs found

    Ability of stabilizer quantum error correction to protect itself from its own imperfection

    Get PDF
    The theory of stabilizer quantum error correction allows us to actively stabilize quantum states and simulate ideal quantum operations in a noisy environment. It is critical is to correctly diagnose noise from its syndrome and nullify it accordingly. However, hardware that performs quantum error correction itself is inevitably imperfect in practice. Here, we show that stabilizer codes possess a built-in capability of correcting errors not only on quantum information but also on faulty syndromes extracted by themselves. Shor's syndrome extraction for fault-tolerant quantum computation is naturally improved. This opens a path to realizing the potential of stabilizer quantum error correction hidden within an innocent looking choice of generators and stabilizer operators that have been deemed redundant.Comment: 9 pages, 3 tables, final accepted version for publication in Physical Review A (v2: improved main theorem, slightly expanded each section, reformatted for readability, v3: corrected an error and typos in the proof of Theorem 2, v4: edited language

    Correction of Data and Syndrome Errors by Stabilizer Codes

    Full text link
    Performing active quantum error correction to protect fragile quantum states highly depends on the correctness of error information--error syndromes. To obtain reliable error syndromes using imperfect physical circuits, we propose the idea of quantum data-syndrome (DS) codes that are capable of correcting both data qubits and syndrome bits errors. We study fundamental properties of quantum DS codes and provide several CSS-type code constructions of quantum DS codes.Comment: 2 figures. This is a short version of our full paper (in preparation

    Quantum convolutional data-syndrome codes

    Full text link
    We consider performance of a simple quantum convolutional code in a fault-tolerant regime using several syndrome measurement/decoding strategies and three different error models, including the circuit model.Comment: Abstract submitted for The 20th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2019

    Continuous Quantum Error Correction Through Local Operations

    Full text link
    We propose local strategies to protect global quantum information. The protocols, which are quantum error correcting codes for dissipative systems, are based on environment measurements, direct feedback control and simple encoding of the logical qubits into physical qutrits whose decaying transitions are indistinguishable and equally probable. The simple addition of one extra level in the description of the subsystems allows for local actions to fully and deterministically protect global resources, such as entanglement. We present codes for both quantum jump and quantum state diffusion measurement strategies and test them against several sources of inefficiency. The use of qutrits in information protocols suggests further characterization of qutrit-qutrit disentanglement dynamics, which we also give together with simple local environment measurement schemes able to prevent distillability sudden death and even enhance entanglement in situations in which our feedback error correction is not possible.Comment: Accepted for publication in Phys. Rev.

    Robust Syndrome Extraction via BCH Encoding

    Full text link
    Quantum data-syndrome (QDS) codes are a class of quantum error-correcting codes that protect against errors both on the data qubits and on the syndrome itself via redundant measurement of stabilizer group elements. One way to define a QDS code is to choose a syndrome measurement code, a classical block code that encodes the syndrome of the underlying quantum code by defining additional stabilizer measurements. We propose the use of primitive narrow-sense BCH codes as syndrome measurement codes. We show that these codes asymptotically require O(tlog)O(t\log\ell) extra measurements, where \ell is the number of stabilizer generators of the quantum code and tt is the number of errors corrected by the BCH code. Previously, the best known general method of constructing QDS codes out of quantum codes requires O(t3log)O(t^3\log\ell) extra measurements. As the number of additional syndrome measurements is a reasonable metric for the amount of additional time a general QDS code requires, we conclude that our construction protects against the same number of syndrome errors with significantly less time overhead

    Robust projective measurements through measuring code-inspired observables

    Full text link
    Quantum measurements are ubiquitous in quantum information processing tasks, but errors can render their outputs unreliable. Here, we present a scheme that implements a robust projective measurement through measuring code-inspired observables. Namely, given a projective POVM, a classical code and a constraint on the number of measurement outcomes each observable can have, we construct commuting observables whose measurement is equivalent to the projective measurement in the noiseless setting. Moreover, we can correct tt errors on the classical outcomes of the observables' measurement if the classical code corrects tt errors. Since our scheme does not require the encoding of quantum data onto a quantum error correction code, it can help construct robust measurements for near-term quantum algorithms that do not use quantum error correction. Moreover, our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.Comment: 7 pages, 1 figure, 2 column
    corecore