3 research outputs found

    Combining chirality and hydrogen bonding in methylated ethylenedithio- tetrathiafulvalene primary diamide precursors and radical cation salts

    Full text link
    Methyl- and dimethyl-ethylenedithio-tetrathiafulvalene ortho-diamide donors Me-EDT-TTF(CONH2)2 (1a) and DM-EDT- TTF(CONH2)2 (1b) have been prepared by the direct reaction of the corresponding diester precursors with aqueous ammonia solutions. The neutral (rac)-1a, (R)-1a, and (S,S)-1b donors have been characterized by single crystal X-ray diffraction. In the three compounds, which crystallized in the non-centrosymmetric monoclinic space group P21, the amide groups are disordered, yet they form the classical intra-molecular hydrogen bond for such an ortho-diamide motif. Electro- crystallization experiments afforded the mixed valence radical cation salts[(S,S)-1b]2XO4 and [(R,R)-1b]2XO4 (X = Cl, Re) containing four independent donors in the asymmetric unit, with the positive charge localized essentially on two donors, while the two others are neutral. The topology of the organic layer is of β′-type. Single crystal resistivity measurements show semiconducting behavior for [(S,S)-1b]2ClO4 and [(R,R)-1b]2ReO4, with a room temperature conductivity of 5 × 10−5 S cm−1 and activation energies Ea ≈ 3000 K. Tight-binding band structure calculations of extended Hückel type in combination with density functional theory calculations are in agreement with the semiconducting behavior and suggest a localized Mott type semiconductor rather than a band gap semiconductor

    Towards a circular economy: fabrication and characterization of biodegradable plates from sugarcane waste

    Get PDF
    Bagasse pulp is a promising material to produce biodegradable plates. Bagasse is the fibrous residue that remains after sugarcane stalks are crushed to extract their juice. It is a renewable resource and is widely available in many countries, making it an attractive alternative to traditional plastic plates. Recent research has shown that biodegradable plates made from Bagasse pulp have several advantages over traditional plastic plates. For example, they are more environmentally friendly because they are made from renewable resources and can be composted after use. Additionally, they are safer for human health because they do not contain harmful chemicals that can leach into food. The production process for Bagasse pulp plates is also relatively simple and cost-effective. Bagasse is first collected and then processed to remove impurities and extract the pulp. The pulp is then molded into the desired shape and dried to form a sturdy plate. Overall, biodegradable plates made from Bagasse pulp are a promising alternative to traditional plastic plates. They are environmentally friendly, safe for human health, and cost-effective to produce. As such, they have the potential to play an important role in reducing plastic waste and promoting sustainable practices. Over the years, the world was not paying strict attention to the impact of rapid growth in plastic use. As a result, uncontrollable volumes of plastic garbage have been released into the environment. Half of all plastic garbage generated worldwide is made up of packaging materials. The purpose of this article is to offer an alternative by creating bioplastic goods that can be produced in various shapes and sizes across various sectors, including food packaging, single-use tableware, and crafts. Products made from bagasse help address the issue of plastic pollution. To find the optimum option for creating bagasse-based biodegradable dinnerware in Egypt and throughout the world, researchers tested various scenarios. The findings show that bagasse pulp may replace plastics in biodegradable packaging. As a result of this value-added utilization of natural fibers, less waste and less of it ends up in landfills. The practical significance of this study is to help advance low-carbon economic solutions and to produce secure bioplastic materials that can replace Styrofoam in tableware and food packaging production
    corecore