36,725 research outputs found

    Terabit Burst Switching

    Get PDF
    This report summarizes progress on Washington University\u27s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. This project seeks to demonstrate the feasibility of Burst Switching, a new data communication service which can more effectively exploit the large bandwidths becoming available in WDM transmission systems, than conventional communication technologies like ATM and IP-based packet switching. Burst switching systems dynamically assign data bursts to channels in optical data links, using routing information carried in parallel control channels. The project will lead to the construction of a demonstration switch with throughput exceeding 200 Gb/s and scalable to over 10 Tb/s

    Terabit Burst Switching Progress Report (12/98-6-99)

    Get PDF
    This report summarizes progress on Washington University\u27s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. This project seeks to demonstrate the feasibility of Burst Switching, a new data communication service which can more effectively exploit the large bandwidths becoming available in WDM transmission systems, than conventional communication technologies like ATM and IP-based packet switching. Burst switching systems dynamically assign data bursts to channels in optical data links, using routing information carried in parallel control channels. The project will lead to the construction of a demonstration switch with throughput exceeding 200 Gb/s and scalable to over 10 Tb/s

    Terabit Burst Switching Progress Report (10/01-3/02)

    Get PDF
    This report summarizes progress on Washington University’s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. This project seeks to demonstrate the feasibility of Burst Switching, a new data communication service which can more effectively exploit the large bandwidths becoming available in WDM transmission systems, than conventional communication technologies like ATM and IP-based packet switching. Burst switching systems dynamically assign data bursts to channels in optical data link, using routing information carried in parallel control channels. The project will lead to the construction of a demonstration switch with throughput exceeding 200 Gb/s and scalable to over 10 Tb/s

    Handover Mechanisms in ATM-based Mobile Systems

    Get PDF
    This paper presents two handover mechanisms that can be used in the access part of an ATM-based mobile system. The first handover mechanism, which is called Âżhandover synchronised switchingÂż is relatively simple and does not use any ATM multicasting or resynchronisation in the network. It assumes that there is sufficient time available such that all data and history information of the old path can be transferred to the mobile terminal (MT) before the actual handover to the new path takes place. It is possible that the time between a handover decision and the actual handover is too short to end the transmission on the old path gracefully (e.g., ending the interleaving matrix, ending transcoder functions, emptying intermediate buffers). A possible solution to this problem is given by the second handover mechanism, where multicast connections to all possible target radio systems (RAS) are used in the core network. This mechanism is called Âżhandover with multicast support

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    Virtual lines, a deadlock-free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper, we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic, it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable of fulfilling these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock-free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel FIFO's, each representing a virtual line. In this way, we not only have solved the problem of head of line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks, it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual line concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology

    Octopus - an energy-efficient architecture for wireless multimedia systems

    Get PDF
    Multimedia computing and mobile computing are two trends that will lead to a new application domain in the near future. However, the technological challenges to establishing this paradigm of computing are non-trivial. Personal mobile computing offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The approach we made to achieve such a system is to use autonomous, adaptable modules, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules that is placed in the data streams. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies
    • …
    corecore