1,292,624 research outputs found
Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections
We have developed cross-genotype and genotype-specific quantitative reverse-transcription PCR (qRT-PCR) assays to detect and quantify the number of parasites, transmission stages (gametocytes) and male gametocytes in blood stage Plasmodium chabaudi infections. Our cross-genotype assays are reliable, repeatable and generate counts that correlate strongly (R(2)s > 90%) with counts expected from blood smears. Our genotype-specific assays can distinguish and quantify different stages of genetically distinct parasite clones (genotypes) in mixed infections and are as sensitive as our cross-genotype assays. Using these assays we show that gametocyte density and gametocyte sex ratios vary during infections for two genetically distinct parasite lines (genotypes) and present the first data to reveal how sex ratio is affected when each genotype experiences competition in mixed-genotype infections. Successful infection of mosquito vectors depends on both gametocyte density and their sex ratio and we discuss the implications of competition in genetically diverse infections for transmission success
Comparison of established and emerging biodosimetry assays
Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools
A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
A stable latent reservoir for HIV-1 in resting CD4+ T cells is the principal barrier to a cure1-3. Curative strategies that target the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation1. However, these quantitative outgrowth assays and newer assays for cells that produce viral RNA after activation6 may underestimate the reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple assays based on polymerase chain reaction to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority of proviruses are defective7-9. Here we describe a more accurate method of measuring the HIV-1 reservoir that separately quantifies intact and defective proviruses. We show that the dynamics of cells that carry intact and defective proviruses are different in vitro and in vivo. These findings have implications for targeting the intact proviruses that are a barrier to curing HIV infection
Recommended from our members
Genomic biomarkers in prostate cancer.
Prostate cancer is the most common non-cutaneous cancer among men in the United States. In the last decade there has been a rapid expansion in the field of biomarker assays for diagnosis, prognosis, and treatment prediction in prostate cancer. The evidence base for these assays is rapidly evolving. With several commercial assays available at each stage of the disease, deciding which genomic assays are appropriate for which patients can be nuanced for physicians. In an effort to help guide these decisions in clinical practice, we aim to give an update on the current status of the biomarker field of prostate cancer
ThermoPhyl : a software tool for selecting phylogenetically optimized conventional and quantitative-PCR taxon-targeted assays for use with complex samples
The ability to specifically and sensitively target genotypes of interest is critical
for the success of many PCR-based analyses of environmental or clinical samples that
contain multiple templates.Next-generation sequence data clearly show that such
samples can harbour hundreds to thousands of operational taxonomic units; a richness
which precludes the manual evaluation of candidate assay specificity and sensitivity
using multiple sequence alignments. To solve this problem we have developed and
validated a free software tool which automates the identification of PCR assays
targeting specific genotypes in complex samples. ThermoPhyl uses user-defined
target and non-target sequence databases to assess the phylogenetic sensitivity and
specificity of thermodynamically optimised candidate assays derived from primer
design software packages. ThermoPhyl takes its name from its central premise of
testing Thermodynamically optimal assays for Phylogenetic specificity and
sensitivity and can be used for two primer (traditional PCR) or two primers with an
internal probe (e.g. TaqMan® qPCR) applications and potentially for oligonucleotide
probes.Here we describe the use of ThermoPhyl for traditional PCR and qPCR assays.
PCR assays selected using ThermoPhyl were validated using 454 pyrosequencing of a
traditional specific PCR assay and with a set of four genotype-specific qPCR assays
applied to estuarine sediment samples
Recommended from our members
MPRAnalyze: statistical framework for massively parallel reporter assays.
Massively parallel reporter assays (MPRAs) can measure the regulatory function of thousands of DNA sequences in a single experiment. Despite growing popularity, MPRA studies are limited by a lack of a unified framework for analyzing the resulting data. Here we present MPRAnalyze: a statistical framework for analyzing MPRA count data. Our model leverages the unique structure of MPRA data to quantify the function of regulatory sequences, compare sequences' activity across different conditions, and provide necessary flexibility in an evolving field. We demonstrate the accuracy and applicability of MPRAnalyze on simulated and published data and compare it with existing methods
- …
