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Abstract

The ability to specifically and sensitively target genotypes of interest is critical

for the success of many PCR-based analyses of environmental or clinical samples that

contain multiple templates. Next-generation sequence data clearly show that such

samples can harbour hundreds to thousands of operational taxonomic units; a richness

which precludes the manual evaluation of candidate assay specificity and sensitivity

using multiple sequence alignments. To solve this problem we have developed and

validated a free software tool which automates the identification of PCR assays

targeting specific genotypes in complex samples. ThermoPhyl uses user-defined

target and non-target sequence databases to assess the phylogenetic sensitivity and

specificity of thermodynamically optimised candidate assays derived from primer

design software packages. ThermoPhyl takes its name from its central premise of

testing Thermodynamically optimal assays for Phylogenetic specificity and

sensitivity and can be used for two primer (traditional PCR) or two primers with an

internal probe (e.g. TaqMan® qPCR) applications and potentially for oligonucleotide

probes. Here we describe the use of ThermoPhyl for traditional PCR and qPCR assays.

PCR assays selected using ThermoPhyl were validated using 454 pyrosequencing of a

traditional specific PCR assay and with a set of four genotype-specific qPCR assays

applied to estuarine sediment samples.
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Introduction

A basic task for many environmental and clinical researchers is to target a

specific genotype in a complex sample to understand, for example, the abundance of a

particular taxon or the expression of a particular gene. For conventional PCR, users

have traditionally designed PCR assays manually, starting with a visual comparison of

alignments of multiple sequences. This approach is at best laborious and, even when a

phylogenetically optimal assay (i.e. maximally sensitive and specific) can be

identified, empirical tests are time-consuming and can still produce poor PCR results.

Software is available that can facilitate primer and probe design and analysis but none

of these completely meet the needs of designing PCR assays to detect target clades

specifically. In particular, there is no software presently available to the community

that can assess the probe and primer sets required for quantitative-PCR (qPCR) assays

using an internal probe, the most accurate and specific qPCR technique. Given the

wealth of sequence data rapidly accumulating from high-throughput sequencing and

the diversity such methods are detecting in environmental and clinical samples (Sogin

et al., 2006; Acosta-Martinez et al., 2008; Andersson et al., 2008; Biddle et al., 2008;

Dowd et al., 2008; Hamady et al., 2008), it is clear that high-throughput PCR primer

and probe design approaches are required to specifically and sensitively target

genotypes in a complex sample.

The software we describe here, ThermoPhyl, exploits the output of proprietary

software that can produce large numbers of thermodynamically optimised candidate

assays for PCR and qPCR (e.g. PrimerExpress (Applied Biosystems (ABI),

Warrington, UK), BatchPrimer3 (You et al., 2008)) and subsequently assessing each

individual assay for sensitivity (proportion of target group perfectly matched) and

specificity (number of non-target organisms perfectly matched) to user-defined target

and non-target sequences in a local database. ThermoPhyl is built around a simple

pattern-matching script and is designed for applications in which a user wishes to

target a taxonomic group of interest in a complex sample. The name ThermoPhyl

derives from its central goal which is to test thermodynamically optimal PCR assays

for phylogenetic sensitivity and specificity to arrive at an assay which is both

thermodynamically and phylogenetically optimal. ThermoPhyl is designed to analyse

a very large number of candidate assays simultaneously and to facilitate primer and

probe set choice by providing an output that clearly summarises the specificity and

sensitivity of each candidate assay.
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ThermoPhyl complements several software tools currently available such as

NCBI Primer Blast, probeCheck (Loy et al., 2008) and ARB (Ludwig et al., 2004)

which meet a range of user needs related to determining the phylogenetic specificity

of targeted primers and probes. ThermoPhyl performs the high-throughput

assessments of assays with one (e.g. FISH), two (conventional PCR), or three (e.g.

TaqMan® qPCR) oligonucleotides, which no other available software can perform.

Additionally, ThermoPhyl is installed locally which allows users to utilize personal

databases and fully control processing speed and throughput. ThermoPhyl can

efficiently harness the power of large datasets by rapidly performing a large number

of comparisons which are summarized in output sorted by specificity and sensitivity.

In this paper, we describe the rationale behind and the use of ThermoPhyl,

compare it to other commonly used primer PCR primer and probe design and

assessment programmes and validate its use in the design of both conventional PCR

and qPCR assays. For conventional PCR we used ThermoPhyl to select a PCR primer

set to amplify the mcrA gene of the methanogenic archaeal genus Methanosaeta and

experimentally tested its specificity and sensitivity using pyrosequencing. For qPCR

we used ThermoPhyl to select four Desulfobulbus genotype-specific qPCR assays and

compared the data produced by this analysis with existing data. The program, a user’s

manual, and a training dataset are made freely available to the research community at:

http://go.warwick.ac.uk/thermophyl.

http://go.warwick.ac.uk/thermophyl
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Materials and Methods

Program validation: Traditional PCR primer set

Sequence Database and Target Group Definition. Using mcrA sequences from the

functional gene pipeline/repository (http://fungene.cme.msu.edu/), a database was

constructed in ARB (Ludwig et al., 2004). Based on maximum-likelihood

phylogenetic reconstructions, a monophyletic clade containing 19 Methanosaeta

sequences, including sequences from the characterised three isolates M. concilii, M.

harundinacea, and M. thermophila was identified as a target group. BatchPrimer3

(You et al., 2008) was used with default parameters to design 50 primer pairs for each

of these target sequences with amplicon lengths set between 400 and 500 bp.

After comparison with the target sequences two primer pairs ranked highly by

ThermoPhyl, F1-1044 (5’-CTACATGTCCGGYGGTGTC-3’) and R1-1507 (5’-

TAGTTRGCGCCYCTCAKCTC-3’), and F2-1060 (5’-

GTCGGWTTCACMCAGTACGC-3’) and R2-1470 (5’-

TGCCCTCGTCKGACTGGTA-3’), were chosen for empirical testing after the

inclusion of several degeneracies based on a manual comparison to the sequence

database.

Primer assessments. Primer specificity, sensitivity, and amplification efficiency were

evaluated empirically using genomic DNA from M. concilii (DSM6752), M.

harundinacea (DSM 17206), M. thermophila (DSM4774), Methanosarcina mazei

(DSM2053), Methanosarcina acetivorans (DSM2834), and environmental DNA from

sediment in the Colne Estuary, U.K. DNA was extracted from actively growing

cultures using the DNAeasy Blood and Tissue kit (Qiagen, Crawley, UK) and

environmental DNA was extracted from sediment samples representing marine and

freshwater conditions (Sites 1 and 10 in Oakley et al. (2010)) as previously described

(Purdy et al., 1996; Purdy, 2005). The first round of PCR was performed in 25 μl 

volumes containing 1X EpiCentre FailSafe Master Mix G (EpiCentre, Madison WI,

USA), 600 nM each primer F1 and R1, and 1.25 U EpiCentre FailSafe Enzyme Mix.

Touchdown PCR was performed with an initial denaturation of 96°C for 2 min

followed by 10 cycles of 94°C for 30 sec, 52°C deg (-1°C/cycle) for 30 sec, 72°C for

40 sec, followed by 22 cycles with 42°C annealing. Because of low amounts of

http://fungene.cme.msu.edu/
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Methanosaeta DNA present in the environmental samples, 1 μl of these PCR products 

was used in a second round of PCR containing 1X Promega PCR buffer, 2.5 mM

MgCl2, 10 μg BSA, 600 nM each primer F2 and R2, 200 nM dNTPs, and 1 U

Promega Taq polymerase. Thermal cycling consisted of 96°C for 2 min, 30 cycles of

94°C for 30 sec, 50°C for 30 sec, 72°C for 40 sec, and a final extension at 72°C for 10

min. Triplicate PCRs from each of three biological replicates (sediment samples taken

within 50 cm at each site (Hawkins & Purdy, 2007)) were cleaned using the QiaQuick

Gel Extraction kit (Qiagen) and pooled after normalization based on quantification of

PCR products using QuantIt PicoGreen (Invitrogen, Paisley, UK) as per

manufacturers instructions and fluorescence measured with a Perkin-Elmer Wallac

Victor2 1420 plate reader.

Pyrosequencing methods. Pyrosequencing was performed at Research and Testing

Laboratory (Lubbock, Texas, USA: http://www.researchandtesting.com) using tagged

amplicon methods similar to those described previously (Dowd et al., 2008) modified

for titanium chemistry (Roche, Indianapolis, USA). In short, concatamer primers were

synthesized using the construct "5' 454TitaniumLinkerA-tag-primer 3'" where the 454

linker A was biotin labelled and based upon Roche amplicon sequencing Titanium

Linker A, the tag was a random 10mer (GC content 40-60%) and utilized to bin out

sequences resulting from a specific sample and the primers used for this study. The

reverse concatenate was in the format "5' 454TitaniumLinkerB-primer" where the

primer was the appropriate reverse primer for the reaction. 20 cycles of PCR were

utilized (94°C for 30 sec, 50°C for 30 sec, 72°C for 40 sec) with a final extension at

72°C for 10 min to incorporate the linkers and tag. Pyrosequencing based upon

titanium bulk sequencing methods was utilized based upon manufacturers' protocols

by introducing the amplicon into the steps in the protocol following library creation.

A 200 flow Titanium sequencing run was performed according the Roche protocols

with amplicon signal processing. Following the sequencing and image processing, the

sequences were binned out based upon tag sequence into individual multi-fasta files

and used for data analysis.

http://www.researchandtesting.com/
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Pyrosequence data analysis. Raw sequence data were edited using a series of custom

Perl and Bioperl scripts which performed the following initial steps: Trimming of

pyrosequencing tag sequences, removal of sequences with one or more ambiguous

base calls, and removal of sequences shorter than 410 bp. Sequences were screened

for the presence of both forward and reverse primer sequences and then translated in

all three forward frames and screened for the presence of a conserved motif (‘VGF’)

within the forward primer region; translated sequences without stop codons and no

more than one unknown amino acid passed the screen and leading and trailing

nucleotides were trimmed to complete codons in the appropriate frame. A total of

1745 sequences from site 10 (out of 7661) and 4517 sequences from site 1 (out of

10874) passed all screens. Minimum, median, and maximum sequence lengths were

411, 415, and 419 bp respectively.

To determine the identity of sequences, a Blastp analysis was performed by

querying each translated sequence against a custom database of 44 mcrA reference

sequences from pure cultures including all known Methanosaeta strains. The only

changes to default Blastp parameters were the use of soft-masking (-F “m S”) to

enable filtering for low-complexity subsequences during the word seeding phase but

not the extension phase of the Blastp algorithm.

Sequences were aligned with Muscle (Edgar, 2004) invoked from a Bioperl

shell which first appended an anchoring oligo sequence (5’-

ACCACACAAAAACCCACA-3’) to both the 5’ and 3’ ends of the alignment and

then randomly split all sequences into subsets of 1000 sequences and aligned these

first to each other, then to a single reference sequence from M. concilii (AF313802).

Each alignment of 1000 sequences was then appended to the previous, and finally, the

entire alignment aligned as a profile to the reference sequence. Alterations to default

Muscle parameters were gap-open and gap-extend penalties of -500. This alignment

strategy was arrived at empirically by optimization of a training data set of

pyrosequencing data derived from a clonal M. concilii sample and resulted in

significantly increased accuracy and reduced computational time (ca. 1 hr vs. 66 hrs)

relative to default command line invocation of Muscle (data not shown).

Distance matrices were made with Phylip (Felsenstein, 1989) using the

Kimura 2-parameter model and sequences were grouped into operational taxonomic

units (OTUs) using the furthest-neighbour method of DOTUR (Schloss &

Handelsman, 2005). Perl was used to generate a custom import filter to incorporate
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sequences into ARB (Ludwig et al., 2004) including a data table of sequence

membership for each OTU. Phylogenetic trees were built with maximum-likelihood

algorithms in ARB using representative sequences from each site for the 27 OTUs

identified by a 20% sequence dissimilarity cut-off conservatively based on a pairwise

nucleotide difference between M. concilii and M. harundinacea of 25% for the

amplicon region.

Program validation: qPCR methods

Probe and primer sets were designed using PrimerExpress (ABI) which

outputs Taqman probe and primer sets that should function effectively using ABI’s

standard qPCR conditions. Multiple potential assays were derived from all of the

target sequences that were available and all candidate assays tested using ThermoPhyl.

Quantitative-PCR assays were performed using Applied Biosystems TaqMan®

gene expression master mix with MGB probes as described previously (Oakley et al.,

2010). Primer and probe sequences for assays M, Mh, FW1, and FW2 are listed in

Table 2. In brief, PCR conditions were as per manufacturer recommendations on an

ABI 7000 or ABI 7500. Each assay was optimized with titrations of primer and probe

and the sensitivity and specificity validated with plasmids from representative target

and closely related non-target clones. Optimized assays contained 300 nM (600 nM

for FW2) each of the forward primer and reverse primers, 200 nM MGB probe and

1X ABI GeneExpression Master Mix in 25 μl reactions. Assays were considered valid

when all no-template controls were negative, calibration-curve R2 values were >98%,

and amplification efficiency was between 90% and 115%. All replicates from each

sampling site were run on a single plate for consistency. Assays have been utilised and

analysed previously in Oakley et al. (2010).
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Results and Discussion

Program structure and function

Conventional methods of PCR primer design for the analysis of complex

communities rely on an initial visual comparison of sequence alignments and then a

painstaking comparison of potential primers. While programs like ARB and Primer

Blast can perform these functions and do produce good PCR primers and probes

performing comparisons between different primer sets is laborious and does not

guarantee success. Furthermore, designing a phylogenetically coherent,

thermodynamically optimised Taqman-like qPCR assay is simply not possible in any

of the presently available programs. Primer design programs can produce large

numbers of thermodynamically optimised primer (Primer3, www.sourceforge.net) or

primer/probe (PrimerExpress, ABI) sets but only do so for individual sequences and

so cannot produce assays that specifically target only the members of a clearly

defined clade without the need for very laborious comparisons of individual candidate

assays. ThermoPhyl fills this gap by comparing the output of high quality primer

design software to sequence data derived from a coherent phylogeny. A flow diagram

showing the steps required to use ThermoPhyl is given in Figure 1. ThermoPhyl is a

simple pattern-matching Perl script that compares primers and probes to two user-

defined datasets, the “target group” and the “non-target group”. For any number of

possible primer/probe sets ThermoPhyl determines assay sensitivity, that is how many

of the “target group” are a perfect match for each primer/probe set, and specificity,

how many of the “non-target group” are a perfect match for the primer/probe sets, for

each individual assay. ThermoPhyl then outputs a “sorted” assay file detailing assays

in order of the highest sensitivity and specificity first (see figure 2a). It also outputs a

“raw-data file” showing which members of the “target group” and “non-target group”

matched with each assay (Figure 2b). From this output it is possible to determine

whether the addition of degeneracies in the primers might improve assay sensitivity,

although such changes may adversely affect the assay as a whole.
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Program requirements

ThermoPhyl, a freeware Perl script programme (download Perl from

http://www.activestate.com/activeperl), is a simple matching programme that runs on

both windows and Unix machines. In tests on moderately fast WinXP machines (e.g.

2 GHz Pentium CPU with 3 Gb of RAM), testing 5,000 candidate qPCR assays

against a database with 5,000 taxa, makes the required 25 million comparisons in

about 2.5 hrs. However, most users will have many fewer comparisons than this and

for most applications ThermoPhyl generally produces output in seconds to minutes.

To run ThermoPhyl, three input files are required. First, a fasta file which contains

all of the desired target and non-target sequences, all with unique names, thought to

be present in the samples of interest. This file should contain as many representative

sequences as possible (typically 100 to 50,000 depending on the application) to

maximize confidence in distinguishing between target and non-target groups. Because

many public databases (e.g. GreenGenes (DeSantis et al., 2006) and Silva (Pruesse et

al., 2007) for 16S rRNA genes) now contain many very similar sequences; users may

want to reduce these databases to representative sequences.

The second file required is a text file containing only the names of the target

sequences. The names must correspond exactly to those in the fasta file above and

should be unique, such as a GenBank accession number.

Finally, a list of candidate assays based on the target sequences must be provided.

These can be produced by a number of primer design programs. For traditional PCR,

BatchPrimer3 (You et al., 2008), http://probes.pw.usda.gov/cgi-

bin/batchprimer3/batchprimer3.cgi, can provide specific candidate assays for a

number of different target sequences from a single fasta file and is a good high-

throughput solution to creating candidate assays to test. For qPCR, software such as

ABI’s PrimerExpress can quickly generate a list of candidate assays to test and so

allow the use of standardised protocols for qPCR. Using these approaches, we have

typically generated 50 candidate assays per target sequence which are then compiled

into a single tab-delimited text file, the candidate-assay file.

Comparison of ThermoPhyl to other primer analysis programmes

Several programmes have been developed to allow users to design or assess probes

and primers to determine whether they are specific and sensitive. However,

http://www.activestate.com/activeperl
http://probes.pw.usda.gov/cgi-bin/batchprimer3/batchprimer3.cgi
http://probes.pw.usda.gov/cgi-bin/batchprimer3/batchprimer3.cgi
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ThermoPhyl was designed when it became apparent that there was no software

available that was designed to assess whether a Taqman-like qPCR probe/primer set

was specific and sensitive. To highlight the differences and similarities between these

programmes ThermoPhyl is compared to several other commonly used programmes

in Table 1. The primary advantages ThermoPhyl has over all the other programmes is

that it is the only programme that is capable of assessing qPCR probe/primer sets and

that is designed to assess very many candidate assays at one time. The other

programmes all have additional limitations which makes ThermoPhyl a valuable tool

in the design of probes and primers. One of ARB’s strengths is its oligonucleotide

probe design capability, which it does with reference to its sequence database and

allows the user to visually assess the newly designed probes. However, ARB’s PCR

primer design is much more limited. It utilises just a target single sequence to produce

candidate assays and offers no simple possibility of assessing these primer sets against

the database. Primer Blast also designs PCR primer sets (using Primer3) and, like

ARB, this is presently limited to using a single target sequence. Primer sets are then

compared to a choice of databases, including the whole nucleotide database but with a

strong recommendation to use non-redundant databases such as Refseq RNA. The

user can set the target clade, however, this is then entirely dependent on the GenBank

taxonomy to define the target clade and there is no option to use a user-defined

database. Primrose does allow the use of user defined databases, although it is

designed to work with the RDP database. Its major drawbacks are that it only designs

oligonucleotides not PCR primer sets and each oligonucleotide needs to be

individually assessed against the database to determine exactly what it matches, which

is time-consuming. Therefore, after a search for potential oligonucleotides potential

primer sets will need to be further assessed for thermodynamic suitability. Finally

probeCheck is designed to assess previously designed oligonucleotides but does so

individually and not as a primer set. Therefore, ThermoPhyl, along with programmes

such as PrimerExpress and BatchPrimer3, allows the very rapid design and

assessment of very many thermodynamically optimised PCR and qPCR assays against

any dataset that the user chooses.
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Validation of ThermoPhyl-selected PCR and qPCR assays

Validation of a ThermoPhyl selected conventional PCR assay. As the first

empirical test of ThermoPhyl, conventional PCR primers specifically targeting the α-

subunit of the methyl-coenzyme M reductase gene (mcrA) of Methanosaeta were

selected following the scheme set out in Figure 1. Over 700 candidate primers sets

were designed using BatchPrimer3 from a range of available Methanosaeta mcrA

sequences from both isolates and environmental clone sequences. As this particular

taxon generally represents a small proportion of DNA in the estuarine sediments

analysed here a nested PCR approach was adopted and so two primer sets were

selected. After routine manual optimization of thermal cycling conditions, the primers

selected by ThermoPhyl produced a strong single band from both genomic DNA

prepared from the three available Methanosaeta isolates (M. concilii, M.

harundinacea and M. thermophila) and environmental DNA preparations but did not

amplify DNA from the closely related Methanosarcina mazei or Methanosarcina

acetivorans (Figure 3).

Using these nested primer sets Methanosaeta-specific PCR products were

amplified from DNA extracted directly from the two contrasting environmental

sediment samples (marine dominated Site 1 and freshwater-dominated Site 10) from

the River Colne, Essex, UK (Hawkins & Purdy, 2007; Oakley et al., 2010). These

amplicons were analysed using only a small proportion (~1%) of a 454 pyrosequence

read. After screening to remove poor quality sequences as described above/below

6,262 high-quality sequences remained (4,517 sequences from Site 1 and 1,745

sequences from Site 10). These sequences were checked using a local Blastp analysis

to a database of 44 mcrA sequences and across the 2 sampling sites 99.9%

(6,257/6,262) of sequences were most closely related to Methanosaeta (Table 1).

Rarefaction analysis of these sequences showed that, at a sequence dissimilarity of

20% (the difference between the mcrA genes of the two mesophilic Methanosaeta

isolates, M. concilii and M. harundinacea, is 25% therefore 20% is a reasonable

species-level definition) the Methanosaeta community at both sites have been

completely sampled (Figure 4). Pyrosequencing of these environmental amplicons

also revealed extensive novel diversity within the Methanosaeta clade (Figure 5).

Twenty-seven OTUs were defined at a 20% cut-off, all falling within the

Methanosaeta clade, yet many clearly represent novel lineages affiliated with
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Methanosaeta. Therefore, these nested PCR primer sets are both specific and sensitive

and show the value of using ThermoPhyl in primer selection.

Validation of ThermoPhyl selected qPCR assays. The second validation test was to

use ThermoPhyl to select Taqman qPCR primer and probe sets, designed using

PrimerExpress (ABI), that targeted four Desulfobulbus genotypes detected in the

Colne estuary, UK (data presented previously in Oakley et al., 2010). The four

Desulfobulbus clades were selected for qPCR analysis because they exhibited a

differential distribution along the estuary based on an initial DGGE analysis, a

distribution that was subsequently supported by clone sequence data (Figure 6).

Candidate assays were designed to target each of the four genotypes, specificity and

sensitivity of these assays was determined using ThermoPhyl and the best assays

selected. Data from these four assays supported our previous data showing all four

genotypes have a restricted distribution along the estuary (Figure 6) indicating that the

assays were targeting the correct genotypes. However, this data does not prove that

the assays are specific. It can be reasoned that a “good” qPCR assay should produce

PCR products that, if sequenced and analysed phylogenetically, should produce a

monophyletic clade, with the caveat that as qPCR assays usually produce very short

fragments the resultant trees are unlikely to be very robust. Therefore, we cloned and

sequenced ~12 amplicons for each assay and all four assays produce monophyletic

groups after sequence analysis (data not shown). Therefore, ThermoPhyl was

successful in selecting highly specific and sensitive qPCR primers and probes from a

large number of thermodynamically optimised candidate assays.

These two validation tests show that ThermoPhyl is capable of analysing large

numbers of potential PCR and qPCR assays for specificity and sensitivity using a

user-defined sequence database and thus will allow the user to make a

phylogenetically informed choice about which primer sets to use for a specific target

group. This is particularly powerful with qPCR assays as no presently available

phylogenetic program is capable of assessing the validity of even a single qPCR

primer/probe set let alone many hundreds of candidate assays. Therefore while

ThermoPhyl is in itself a simple pattern-matching program it fills a gap in the

available software by linking a wholly user-defined dataset to powerful PCR and

qPCR primer design software.
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Potential pitfalls and specific recommendations

To use ThermoPhyl effectively, target groups must form a natural

phylogenetic group. Prior to using ThermoPhyl sequences should be properly placed

in some sort of a phylogenetic tree to evaluate this and to designate target and non-

target sequences in a way which reflects the evolutionary history of the gene in

question. If the target sequences do not form a coherent phylogenetic group, it will be

difficult to design an accurate assay, although it is possible that different sequence

data (e.g. another gene) for the same taxa could still be used in such a case.

Additionally, the more sequence data available for both target- and non-target-

groups, the better. The strength of ThermoPhyl, in fact its central goal, is to

summarize a very large number of comparisons to arrive at a single ‘best’ assay.

However, users should be aware that some genes or clades may prove more

challenging than others, especially if the targeted gene is highly variable or does not

carry a strong phylogenetic signal. Additional guidance is provided in the user’s

manual, and common questions are listed in the FAQ, both accessible via the

ThermoPhyl website.

While ThermoPhyl can perform the most laborious aspects of selecting primer

sets it is necessary for the user to engage with the ThermoPhyl output to determine

how well the “best” assays suit their purpose. We have found that using

ThermoPhyl’s output within programmes such as ARB can rapidly confirm the

potential value of a primer set and highlight where degenerate bases could improve

sensitivity without unduly compromising specificity, although this is not

recommended for qPCR probe and primer sets unless absolutely necessary.
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Conclusions

ThermoPhyl can utilize large sequence datasets now commonly available to

identify phylogenetically specific and sensitive assays for traditional and quantitative

PCR. ThermoPhyl is run locally on a user’s computer, avoiding constraints of internet

data transmission, and allowing for customized, personal databases. ThermoPhyl can

provide a high-throughput data-driven solution to the problem of targeted assay

design in complex samples and is made available free to the research community at:

http://go.warwick.ac.uk/thermophyl/.
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Table legends

Table 1. Comparison of ThermoPhyl to four other commonly used oligonucleotide

analysis programmes.

Table 2. Summary of the local Blastp analysis of the Methanosaeta mcrA sequence

data. Pyrosequence data were analyzed by Blastp run locally on a custom database

containing 44 pure culture mcrA sequences, including all Methanosaeta strains. The

only changes to default parameters were the use of soft-masking (-F “m S”) to enable

filtering for low-complexity subsequences during the word seeding phase but not the

extension phase of the Blastp algorithm.

Table 3. Desulfobulbus clade-specific qPCR assay primer and probe sequences

(Oakley et al., 2010) selected using ThermoPhyl.

Figure legends

Figure 1. Flow diagram showing how ThermoPhyl is used in comparison to existing

standard practice.

Figure 2. Output files from ThermoPhyl (text files opened in Excel). a. Results sorted

according to the highest number of “target group” hits for each individual. The F1/R1

primers have been move to the top of table and highlighted in grey. b. Raw data,

showing how each assay accumulates matches with target and non-target sequences.

The F1/R1 primers have been move to the top of table and highlighted in grey.

Figure 3. PCR amplification of Methanosaeta mcrA gene from Colne estuary

sediment using the primers F2 and R2 as described in the text. Lanes 1) M. concilii, 2)

M. harundinacea, 3) M. thermophila, 4) Methanosarcina mazei, 5) Methanosarcina

acetivorans, 6) Site 1 sediment DNA, 7) Site 10 sediment DNA, and 8) no-template

control.



19

Figure 4. Rarefaction analysis of Methanosaeta mcrA pyrosequence data with OTUs

defined at 10%, 15%, 20%, and 25% sequence dissimilarity from a. Site 1 and b. Site

10. Curves marked with * were saturated for OTU definitions. Sequence dissimilarity

between M. concilii and M. harundinacea is 25% for the amplicon region.

Figure 5. Phylogenetic representation of mcrA sequence diversity recovered by

ThermoPhyl-generated primers. The tree is a maximum-likelihood phylogenetic

reconstruction based on alignment of nucleotides restricted to the amplicon region.

Sequences are labelled with either S1 or S10 indicating whether they are from Site 1

or Site 10 respectively and those shown are representatives of the 27 OTUs defined as

described in the text.

Figure 6. Identity and distributions of Desulfobulbus-affiliated dsrB ecotypes (adapted

from Figure 3 in Oakley et al., 2010). a. Phylogenetic positions of the four assayed

clades within Desulfobulbus. Tree was reconstructed from amino acid informed DNA

alignment using the maximum-likelihood algorithm AxML. b. Distributions of these

four genotypes across the estuary as assessed by DGGE. Values represent peak

heights normalized within each lane to control for loading differences. c. Distributions

of four genotypes as assessed by clade-specific qPCR assays. Values represent means

of three biological replicates (error bars = 1 SEM).
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1Arb designs and compares oligonucleotide probes with reference to the whole database but does not do so for PCR primer sets, which are1

designed with reference to a single sequence only and the subsequent primer sets cannot be directly compared against the database.2

2Primrose designs and assesses single oligonucleotides not PCR primers sets3

3probeCheck is designed to check single probe specificity.4

4Limit is based on processing time, which depends of the speed of the local computer, the number of candidate assays and the sizes of the target5

and non-target databases.6

7

8

9

10

11

12

13

Table 1.14
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1

Top BLASTP hit Site 1 Site 10

Targets

Methanosaeta concilii AF313802 2563 1674

Methanosaeta harundinacea AY970348 1825 13

Methanosaeta concilii VeAc9 AF313803 115 148

Methanosaeta thermophila PT gb|ABK14360.1 9 10

Non-targets

Methanothermobacter marburgensis X07794 2

Methanothermus fervidus J03375 1

Methanococcus jannaschii mrtA U67465 1

Methanococcoides burtonii U22234 1

Total 4517 1745

2

Table 2. Summary of the local Blastp analysis of the Methanosaeta mcrA sequence3

data. Pyrosequence data were analyzed by Blastp run locally on a custom database4

containing 44 pure culture mcrA sequences, including all Methanosaeta strains. The5

only changes to default parameters were the use of soft-masking (-F “m S”) to enable6

filtering for low-complexity subsequences during the word seeding phase but not the7

extension phase of the Blastp algorithm8

9
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Assay Forward Primer Reverse Primer Probe Position

M TGATTGACCACACCCGTATTACC GCCGTTCACCTCAGCCTTAG ATCTCTGCTTGTCCGCTC 673-783

Mh CGCTGTTCATGCTTCCGATA GATCGATCATCGGCGGTTT CCTCGGTGTGCATCG 620-681

FW1 TCGCCATTCTCGGTATCCAT CCGGTGATCCGGTCGTT CAAACCGCCGATGAT 640-704

FW2 CCGGTTAAGGCGGTTATGG CGCCGGCAAGGTCATG TGATCTGTTCGAGTATTTTGGTT 595-653

Table 3. Desulfobulbus clade-specific qPCR assay primer and probe sequences (Oakley et al., 2010) selected using ThermoPhyl (all 5’-3’).



Phylogenetically analysed
sequence database

Define target clade

Determine assay
specificity/sensitivity
(One set at a time)

Design candidate assays
(e.g. Arb)

Test primer sets with
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the most specific and
sensitive assays

Define fasta file
containing in
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design many candidate

assays
(PrimerExpress/Primer 3)

Traditional
route
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Test “best choice” primer
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Investigate output to see
whether assays can be
improved, (addition of

degeneracies)

Figure 1. Flow diagram showing how ThermoPhyl is used in comparison to existing
standard practice.



a. “sorted_search_results”

b. “raw_search_results”

Figure 2. Output files from ThermoPhyl (txt files opened in Excel). a. Results sorted according
to the highest number of “target group” hits for each individual assays. The F1/R1 primers have
been move to the top of table and highlighted in grey. b. Raw data, showing how each assay
accumulates matches with target and non-target sequences. The F1/R1 primers have been move
to the top of table and highlighted in grey.
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Figure 3. PCR amplification of Methanosaeta mcrA
genes from Colne estuary sediment using the
primers F2 and R2 as described in the text. Lanes 1)
M. concilii, 2) M. harundinacea, 3) M. thermophila,M. concilii, 2) M. harundinacea, 3) M. thermophila,
4) Methanosarcina mazei, 5) Methanosarcina
acetivorans, 6) Site 1 sediment DNA, 7) Site 10
sediment DNA, and 8) no-template control.



0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

10

20

30

40

50

60

70

b. Site 10

No of sequences

*
*

*

10%

15%

20%
25%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

10

20

30

40

50

60

70

*
*

a. Site 1

OTUs

10%

15%

20%
25%

Figure 4. Rarefaction analysis of Methanosaeta mcrA pyrosequence data with OTUs
defined at 10%, 15%, 20%, and 25% sequence dissimilarity from a. Site 1 and b. Site
10. Curves marked with * were saturated for OTU definitions. Sequence dissimilarity
between M. concilii and M. harundinacea is 25% for the amplicon region.
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Figure 5. Phylogenetic representation of mcrA sequence diversity recovered by ThermoPhyl-
generated primers. The tree is a maximum-likelihood phylogenetic reconstruction based on
alignment of nucleotides restricted to the amplicon region. Sequences are labelled with either S1
or S10 indicating whether they are from Site 1 or Site 10 respectively and those shown are
representatives of the 27 OTUs defined as described in the text.



D’bulbus
rhabdoformis

Desulfobulbus sp.
DSM2058

D’bulbus
japonicus

FW2

M

Mh

D’bulbus
propionicus

D’bulbus
elongatus

D’bulbus sp.
DSM 2033

Desulfobulbus
mediterraneus

0.10

Other
Desulfobulbaceae

Desulfofustis
glycolicus

Desulfobacteraceae

FW1

a.

M Mh FW1

N
o
rm

a
liz

e
d

p
e
a
k

h
e
ig

h
t

0.15

0.25

b. (DGGE)

FW2

1 2 3 4 5 6 7 8 9 10

N
o
rm

a
liz

e
d

p
e
a
k

0.05

d
s
rB

c
o
p
ie

s
μ

g
-1

D
N

A

101

103

105

Site
1 2 3 4 5 6 7 8 9 10

M Mh FW2FW1

c. (qPCR)

Figure 6. Identity and distributions of Desulfobulbus-affiliated dsrB ecotypes (adapted from
Figure 3 in Oakley et al., 2010). a. Phylogenetic positions of the four assayed clades within
Desulfobulbus. Tree was reconstructed from amino acid informed DNA alignment using the
maximum-likelihood algorithm AxML. b. Distributions of these four genotypes across the
estuary as assessed by DGGE. Values represent peak heights normalized within each lane to
control for loading differences. c. Distributions of four genotypes as assessed by clade-
specific qPCR assays. Values represent means of three biological replicates (error bars = 1
SEM).


