6,460 research outputs found
IMOBILISASI ZEOLIT BEKAS PENYERAP LIMBAH RAFINAT DARI PRODUKSI RADIOISOTOP MOLIBDENUM-99 DENGAN POLIMER
Rafinat waste that produced by Instalation of Radioisotop Production is contained
uranium. The research of uranium sorption by zeolite Alumino Silico Phosphate (ASP) and
selected of best waste loading for immobilisation of saturated zeolite uranium used resin epoxy
has been done. Uranium used is a simulation waste from uranyl nitrat hexahydrat which has 50
ppm in concentration. Zeolite ASP was made by mixing pure zeolite with Ammonium Dihydrogen
Phosphate (ADHP). This research was done to variate the factor that influence the sorption
process. Which are composition of zeolite ASP,retention time, and pH. The result of selected
variable will be used for making saturated zeolite uranium will be immobilized with epoxy resin
with variation of waste loading.
Optimum condition of uranium sorption reached on zeolite ASP 1:1 with pH 7 and
retention time for 12 minutes with uranium removal efficiency 51,1 %. Base on density,
compressive strenght, and leaching rate ,the best result for polymer-waste block is on 20 %
waste loading. In that condition the density for polymer waste block is 1,0538 gram/cm3
, the
compreesive strenght 19,36 kN/cm3
and the leaching rate is not detected.
Key word: Sorption, zeolite ASP, waste loading, epoxy resi
Recommended from our members
Extreme morning chronotypes are often familial and not exceedingly rare: the estimated prevalence of advanced sleep phase, familial advanced sleep phase, and advanced sleep-wake phase disorder in a sleep clinic population.
Study objectivesReport the first prevalence estimates of advanced sleep phase (ASP), familial advanced sleep phase (FASP), and advanced sleep-wake phase disorder (ASWPD). This can guide clinicians on the utility of screening for extreme chronotypes both for clinical decision-making and to flag prospective participants in the study of the genetics and biology of FASP.MethodsData on morning or evening sleep schedule preference (chronotype) were collected from 2422 new patients presenting to a North American sleep center over 9.8 years. FASP was determined using a severity criterion that has previously identified dominant circadian mutations in humans. All patients were personally seen and evaluated by one of the authors (C.R.J.).ResultsOur results demonstrate an ASP prevalence of 0.33%, an FASP prevalence of 0.21%, and an ASWPD prevalence of at least 0.04%. Most cases of young-onset ASP were familial.ConclusionsAmong patients presenting to a sleep clinic, conservatively 1 out of every 300 patients will have ASP, 1 out of every 475 will have FASP, and 1 out of every 2500 will have ASWPD. This supports obtaining a routine circadian history and, for those with extreme chronotypes, obtaining a family history of circadian preference. This can optimize treatment for evening sleepiness and early morning awakening and lead to additional circadian gene discovery. We hope these findings will lead to improved treatment options for a wide range of sleep and medical disorders in the future
Investigating hookworm genomes by comparative analysis of two Ancylostoma species
Background
Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum.
Results
Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum / A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans / C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans / C. briggsae.
Conclusion
The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics
Molecular basis for passive immunotherapy of Alzheimer's disease
Amyloid aggregates of the amyloid-{beta} (A{beta}) peptide are implicated in the pathology of Alzheimer's disease. Anti-A{beta} monoclonal antibodies (mAbs) have been shown to reduce amyloid plaques in vitro and in animal studies. Consequently, passive immunization is being considered for treating Alzheimer's, and anti-A{beta} mAbs are now in phase II trials. We report the isolation of two mAbs (PFA1 and PFA2) that recognize A{beta} monomers, protofibrils, and fibrils and the structures of their antigen binding fragments (Fabs) in complex with the A{beta}(1–8) peptide DAEFRHDS. The immunodominant EFRHD sequence forms salt bridges, hydrogen bonds, and hydrophobic contacts, including interactions with a striking WWDDD motif of the antigen binding fragments. We also show that a similar sequence (AKFRHD) derived from the human protein GRIP1 is able to cross-react with both PFA1 and PFA2 and, when cocrystallized with PFA1, binds in an identical conformation to A{beta}(1–8). Because such cross-reactivity has implications for potential side effects of immunotherapy, our structures provide a template for designing derivative mAbs that target A{beta} with improved specificity and higher affinity
X-ray structure of Ostertagia ostertagi ASP-1 provides detailed insights in dimerization mechanism and protein cyclization
Latent Gaussian modeling and INLA: A review with focus on space-time applications
Bayesian hierarchical models with latent Gaussian layers have proven very
flexible in capturing complex stochastic behavior and hierarchical structures
in high-dimensional spatial and spatio-temporal data. Whereas simulation-based
Bayesian inference through Markov Chain Monte Carlo may be hampered by slow
convergence and numerical instabilities, the inferential framework of
Integrated Nested Laplace Approximation (INLA) is capable to provide accurate
and relatively fast analytical approximations to posterior quantities of
interest. It heavily relies on the use of Gauss-Markov dependence structures to
avoid the numerical bottleneck of high-dimensional nonsparse matrix
computations. With a view towards space-time applications, we here review the
principal theoretical concepts, model classes and inference tools within the
INLA framework. Important elements to construct space-time models are certain
spatial Mat\'ern-like Gauss-Markov random fields, obtained as approximate
solutions to a stochastic partial differential equation. Efficient
implementation of statistical inference tools for a large variety of models is
available through the INLA package of the R software. To showcase the practical
use of R-INLA and to illustrate its principal commands and syntax, a
comprehensive simulation experiment is presented using simulated non Gaussian
space-time count data with a first-order autoregressive dependence structure in
time
- …
