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The need for alternative ways to control helminth
parasites has in recent years led to a boost in vaccina-
tion experiments with recombinant antigens. Despite
the use of different expression systems, only a few
recombinants induced high levels of protection against
helminths. This is often attributed to the limitations of
the current expression systems. Therefore, the need for
new systems that can modify and glycosylate the
expressed antigens has been advocated. However,
analysis of over 100 published vaccine trials with
recombinant helminth antigens indicates that it is
often not known whether the native parasite antigen
itself can induce protection or, if it does, which epi-
topes are important. This information is vital for a well-
thought-out strategy for recombinant production. So,
in addition to testing more expression systems,
it should be considered that prior evaluation and
characterization of the native antigens might help
the development of recombinant vaccines against hel-
minths in the long term.
The need for recombinant vaccines against helminths
Vaccination against helminths represents a promising
alternative for anthelmintic treatment. Even before
anthelmintic resistance became a real issue, research
started on the development of vaccines because theywould
be easy to use, would stimulate natural immunity and
would be safer in terms of ecotoxicity and presence of
residues in meat and milk. Theoretically, several types
of vaccine could be used, including vaccines based on: live
attenuated material, whole material of dead organisms,
(semi-) purified native antigens and recombinant anti-
gens. However, in the case of helminths, there are many
practical problems associated with the use of vaccines
based on native material. Most importantly, it is very
difficult to obtain large quantities of worm material or
native antigens from most helminths. An additional pro-
blem with native vaccines is the necessity to control for
batch differences or to obtain a commercially stable for-
mulation of native parasite material. For these reasons,
commercialization will depend on the use of recombinant
antigens [1].

Current status on recombinant vaccines
Since the early 1990s, more than 100 trials with over
80 different recombinant antigens from 22 different
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helminth species have been published (Table 1). Effective
recombinant vaccines have been developed for the cestode
parasites Taenia ovis, T. saginata, T. solium and Echino-
coccus granulosus [2]. Apart from these examples, few
other recombinants have been produced that induce enough
protection to even consider commercialization. Often, the
reason for failure has been attributed to the lack of
appropriate expression systems to produce these helminth
antigens.

About 70 different antigens from 21 different species
have been expressed in the Escherichia coli expression
system. The outcome of the vaccination trials with these
bacterial recombinants showed considerable variation. In
taeniid cestodes, very high percentages of protection were
obtained in different species, with different antigens and in
different hosts (see Table 1). E. coli expressed antigens of
trematodes and nematodes have had more variable suc-
cesses, ranging from 100% reduction in egg counts in mice
and sheep for a Schistosoma mansoni antigen tested
against Fasciola hepatica, to 0% reduction for nematode
antigens ofHaemonchus contortus andOstertagia ostertagi
(Table 1).

Yeast has been used to express 12 different antigens
from six helminth species. The levels of protection obtained
with these recombinants vary considerably, although all of
them appear to induce some level of protection (see
Table 1). The best results were obtained with the recom-
binant Sh28GST antigen fromS. haematobium and the Ac-
APR-1 antigen from the hookworm Ancylostoma caninum:
vaccination with these antigens reduced the egg output by
77% and 85%, respectively.

The baculovirus expression system has been used to
produce eight different antigens from five species
(Table 1). A recombinant version of a cathepsin L from
F. hepatica reduced the worm burden by 52%, and an
S. japonicum recombinant SjFABP reduced the parasite
burden by 49%. Protection studies with the antigens from
nematodes were less successful. Only the Ac-ASP2 anti-
gen from A. caninum reduced the egg output by 69%. All
other antigens from the nematode species tested were not
protective at all.

Recently, for the first time, the free-living nematode
Caenorhabditis elegans was used to express a helminth
antigen in sufficient amounts for a vaccine study [3]. This
was done for a cathepsin L from H. contortus. However,
despite the high levels of specific antibody titres, vaccina-
tion of sheep did not protect them against a homologous
challenge infection.
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Effect of the expression system on protection
Production of the recombinant antigen in an immuno-
logically active form is the key step in vaccine production.
In the main, three different expression systems have
been used, that is bacterial, yeast and baculovirus. The
advantages and disadvantages of each system have been
Table 1. Overview of vaccination trials with recombinant helminth

Species Antigen Host (a

E. coli expression system

Cestodes

Taenia ovis To45W (L) Sheep

To45S (L) Sheep

To16K (L) Sheep

To18K (L) Sheep

Taenia solium TSOL18 (L) Pigs (i.m

TSOL45 (L) Pigs (i.m

To45W (L) Pigs (i.m

+16K-GST

+18K-GST

Taenia saginata To45W (L) Cattle

TSA-18+TSA-9 (L) Cattle (

Echinococcus granulosus EG95 (L) Sheep

Sheep

Goats (

Cattle (

Echinococcus multilocularis EM95 (L) Mice (s

Mice (s

Trematodes

Fasciola hepatica Fh15FABP (I)* Rabbits

Sheep

Sm14 (F/I) Rabbits

Sheep

Mice (s

rSbGST (F)* Cattle (

Saposine 2 (I) Rabbits

Fasciola gigantica rFgFABP (I)* Cattle (

Cattle (

Buffalo

Schistosoma mansoni Sm14 (F/I) Mice (s

Paramyosin (I)* Mice (i.

Sm-tsp-1 (L) Mice

Sm-tsp-2 (L) Mice

Sm22,6 (I) Mice (s

Schistosoma japonicum Sj-Ts4 (I) Mice (s

Sjc-97 pmy (I)* Mice (s

Pigs (i.d

Water b

Mice (s

Mice (i.

SjFABP (I) Rats (i.

Sheep

Mice (s

SVLBP (F) Cattle (

Sjc26GST (F) Mice (s

Pigs (i.d

Sheep

Sj23 (I) Sheep

Schistosoma bovis Sb28GST (F)* Sheep

Goats (

Calves

infectio

Fh15FABP (I) Mice (s

Nematodes

Ancylostoma ceylanicum AceES-2 (F) Hamste

Ancylostoma caninum Ac-ASP1 (F) Mice (i.

Ac-AP (F) Dogs (s

Ac-TMP (F) Dogs (s

Ac-MTP-1 (F) Dogs (i
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discussed in detail in Ref. [4] and are summarized in Box 1.
The bacterial expression system has been by far the most
popular choice to express helminth antigens. However,
except for the results with cestodes, the levels of protection
induced with E. coli recombinants have been rather dis-
appointing. The failure to induce protection has often been
antigensa

Reduction (%)

dministration/adjuvant) Eggs Worms Refs

(i.m./saponin) >90 [2,19]

(i.m./saponin) 87 [2,19]

(s.c./saponin) 92 [2,19]

(s.c./saponin) 99 [2,19]

./QuilA) 100 [2,19]

./QuilA) 100 [2,19]

./QuilA) 93 [20]

[20]

[20]

0 [2,19]

i.m./QuilA) >90 [2,19]

(s.c./QuilA) 96–98 [2,19]

(s.c./QuilA) 96–100 [2,19]

s.c./QuilA) 96–100 [2,19]

sc/QuilA) 96–100 [2,19]

.c./saponin) 78 [19]

.c./STP) 63 [19]

(s.c./FCA) 43–76 n.t. [21]

(s.c./FCA) 0 n.t. [21]

(s.c./FCA) 89 n.t. [21]

(s.c./MPL-RIBI + alum) 100 n.t. [21]

.c./FCA) 100 n.t. [21]

i.m./alum, QuilA, FCA) 0 n.t. [21]

(s.c./TiterMax) 81 73–84 [21]

i.m./FCA) 1 n.t. [21]

i.m./QuilA) 11 n.t. [21]

es (s.c./FCA) 36 98 [21]

.c./RIBI) 43–67 n.t. [22]

d./BCG) 33 n.t. [23]

34 52 [24]

57 64 [24]

.c./FCA) 34 [25]

.c./FCA) 36 n.t. [9]

.c./QuilA) 32 66 [9]

./TiterMax or Alum) 33 n.t. [9]

uffaloes (i.m./QuilA) 34 48 [9]

.c./FCA) 32 66 [9]

d./FCA) 34–49 n.t. [9]

d./FCA) 32 n.t. [9]

(i.m./FCA) 59 23–70 [9]

.c./FCA) 33 47 [9]

i.m./FCA) 30 53–89 [9]

.c./FCA) 23 59 [9]

./Alum) n.t. 53 [9]

(i.m./FCA) 62 38 [9]

(i.m./FCA) 58–66 35–58 [9]

(s.c./FCA) 37 18 [26]

s.c./FCA) 46 35 [27]

(i.m./FCA/

n with S. mattheei)

50 89 [1]

.c./FCA) 72 n.t. [28]

rs (s.c./Alum) n.t. n.t. [29]

p./Alum) 60 0 [29]

.c./Cal) 5-35 0 [29]

.c./Alum) 11 0 [29]

.m./AS02) 0 0 [29]



Table 1 (Continued )

Reduction (%)

Species Antigen Host (administration/adjuvant) Eggs Worms Refs

Onchocerca volvulus Tropomyosin (I) Mice (s.c./FCA) 48-62 n.t. [30]

Ov7 (I) Mice (s.c./Alum) 34 n.t. [31]

Ov64 (I) Mice (s.c./Alum) 40 n.t. [31]

OvB6 (I) Mice (s.c./Alum) 46 n.t. [31]

Ov9M (I) Mice (s.c./Alum) 0 n.t. [31]

Ov73k (I) Mice (s.c./Alum) 13 n.t. [31]

Ov7 (I) Mice (s.c./FCA) 21 n.t. [31]

Ov64 (I) Mice (s.c./FCA) 4 n.t. [31]

OvB6 (I) Mice (s.c./FCA) 0 n.t. [31]

Ov9M (I) Mice (s.c./FCA) 23 n.t. [31]

Ov73K (I) Mice (s.c./FCA) 26 n.t. [31]

Ov-ASP-1 (F) Mice (s.c./FCA) 44 n.t. [32]

Mice (s.c./Alum) 42 n.t. [32]

Ov-ALT-1 (F) Mice (i.m./FCA) 36 n.t. [33]

Ascaris suum rAs24 (I) Mice (s.c./FCA) 58 n.t. [34]

14 kDa (I) Mice (nas./cholera) 64 n.t. [35]

16 kDa (I) Mice (nas./cholera) 58 n.t. [36]

Trichostrongylus colubriformis 17 kDa (F) Lambs (ip/IFA) 40 40 [1]

Haemonchus contortus H11-1 (F)* Sheep n.t. 30–40 [1]

H-Gal-GP* components (F) Sheep

Galectin Sheep (s.c./QuilA) 0 0 [1]

Cystatin Sheep (i.m./QuilA) 0 0 [1]

MEP1 Sheep (i.m./QuilA) 0 0 [1]

MEP3 Sheep (i.m./QuilA) 0 0 [1]

HcPEP1 Sheep (s.c./DDA) 0 0 [1]

15 kDa + 24kDa (I)* Sheep (s.c./DDA) 0–55 0–49 [1]

+glycans (I) Sheep (i.m./QuilA) 0–65 0–46 [1]

hmcp1,4 and 6 (F) Sheep (i.m./QuilA) 38 10 [37]

Sheep (i.m./QuilA) 29 27 [38]

Ostertagia ostertagi OPA (F)* Cattle (i.m./QuilA) 0 0 [39]

Dictyocaulus viviparus Acetylcholinesterase (F)* Cattle (i.m./FIA) 0 n.t. [40]

Acanthocheilonema viteae Tropomyosin (I) Jirds (s.c./STP) 30 n.t. [41]

Necator americanus Calreticulin (I) Mice (i.p./PLG particles) 43–49 n.t. [42]

Yeast expression system

Trematodes

Fasciola hepatica Cathepsin L3 (I)* Rats (i.m./Carbopol) 18 n.t. [21]

Schistosoma mansoni GST Sm28 (F) Laboratory animals, rodents,

primates, cattle

40–60 n.t. [43]

Schistosoma japonicum Sjc-97 pmy (I)* Mice (sc/QuilA) 23–40 25–78 [9]

Schistosoma haematobium Sh28GST (F) Primates (i.d./FCA) 66–77 [44]

Nematodes

Ancylostoma ceylanicum ASP-1 (F) Hamsters (i.m./QuilA) 21 n.t. [29]

ASP-2 (F) Hamsters (i.m./QuilA) 32 56 [29]

MTP-1 (F) Hamsters (i.m./QuilA) 28 43 [29]

MTP-1 + ASP-2 (F) Hamsters (i.m./QuilA) 36 59 [29]

NIF (F) Hamsters (s.c./FCA) Reduced fecundity [29]

Ancylostoma caninum Ac-APR-1 (F) Dogs (i.m./ASO3) 33 85 [29]

Ac-CP-2 (F) Dogs (i.m./ASO2) Reduced fecundity 32 [29]

Ac-GST (F) Dogs (i.m./ASO3) 40 n.t. [29]

Hamsters (i.m./alhydrogel) 54 [29]

Baculovirus expression system

Trematodes

Fasciola hepatica Cathepsin L3 (I) Rats (i.m./carbopol) 52 n.t. [21]

Schistosoma japonicum SjFABP (I) Mice (i.d./FCA) 49 n.t. [8]

Nematodes

Ancylostoma caninum Ac-APR-1 (F) Dog (s.c./Alum) 18 0 [29]

Ac-ASP2 (F) Dog (i.m./ASO3) 26 69

Haemonchus contortus H11 isoforms (F)* Sheep 0 0 [1]

Ostertagia ostertagi Oo API (I) Cattle (i.m./QuilA) 0 0 [45]

Oo MET1 (I) Cattle (i.m./QuilA) 0 0 [46]

Oo HSP (I) Cattle (i.m./QuilA) 0 0 [47]

Caenorhabditis elegans

Nematodes

Haemonchus contortus Cathepsin L (F) Sheep (i.m./QuilA) 0 0 [3]
aNB This table is not comprehensive.

Abbreviations: n.t.: not tested; i.m.: intramuscular; i.d.: intradermal; s.c.: subcutaneous; nas.: nasal; i.p.: intraperitoneal; FCA: Freund Complete Adjuvant; IFA: Incomplete

Freund Adjuvant; DDA: dimethyl dioctadecyl ammonium bromide; STP: 1% pluronic 121, 10% squalene, 0,4%Tween 80; MPL-RIBI: Monophosphoryl Lipid A; BCG: bacille

Calmette-Guérin; PLG: poly(lactide-co-glycolide); ASO: Aldicarb sulfone; Alum: aluminium hydroxide; QuilA: saponin; F: antigen selected based on presumed functional

importance. I: antigen selected based on immune recognition. L: antigen selected based on location or accessibility to the immune system.
*Antigens tested in native form.
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Box 1. Advantages and disadvantages of different

prokaryotic and eukaryotic expression systems

Advantages

Bacterial

� Ease of culture/rapid cell growth

� Minimum complexity of medium

� Large yields: up to 10% of mass

Yeast

� High density culture/rapid cell growth

� Minimum complexity of medium

� Secretion of proteins to medium

� Post-translational modifications present

Insect cells/Baculovirus

� Secretion of proteins to medium

� Proper folding of the proteins

� Simple glycosylations present, similar to mammalian

Mammalian cells

� Secretion of proteins to medium

� Proper folding of the proteins

� Complex glycosylations present

Disadvantages

Bacterial

� Insoluble proteins, difficult to recover/refold

� Post-translational modifications absent

Yeast

� Refolding might be required

� High mannose glycosylation

Insect cells/Baculovirus

� Cell growth slow

� More expensive than bacteria and yeast

Mammalian cells

� Cell growth slow

� Low–moderate expression

� Expensive medium
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explained by the inappropriate folding of the peptide back-
bone and/or the lack of glycosylation on these bacterial
recombinants. Many helminth antigens carryN- and/or O-
glycans on their peptide core, and some of these elicit
strong immune responses [5–7]. An additional problem
with E. coli is that much of the recombinant protein
generated can end up in insoluble inclusion bodies. As a
consequence, use of eukaryotic expression systems, such as
yeast and baculovirus, has been proposed to address these
problems with the bacterial recombinants [4].

However, there is little experimental evidence that the
protective capacity of recombinant helminth antigens actu-
ally improves by switching from a bacterial to a eukaryotic
expression system. Of the extensive list of recombinant
antigens shown in Table 1, only three have been produced
in different expression systems and subsequently tested
for their protective capacities. The reduction in egg counts
induced by vaccination with a cathepsin L3 from F. hepa-
tica increased from 18% to 52% by changing from a yeast-
to a baculovirus-based expression system [8]. Recombinant
versions of the fatty-acid-binding protein SjFABP of
S. japonicum produced in E. coli and baculovirus induced
similar levels of protection, that is �49% reduction in egg
counts [9]. Finally, in the case of the H. contortus H11
www.sciencedirect.com
antigen, the protective capacity actually fell using an
enzymatically active baculovirus-expressed version com-
pared with an E. coli recombinant [1].

Although the yeast and baculovirus expression systems
clearly have the capability to glycosylate the recombinant
antigens, this glycosylation can differ drastically from the
helminth glycans. The yeast Saccharomyces cerevisiae, for
example, can cover the peptide core with very large glycan
trees,whichpotentiallymask importantpeptideepitopes [4]
or which can make the protein hyperantigenic [10]. This
seemed to be the case with the yeast-expressed F. hepatica
cathepsin L3, which induced less protection compared
with the baculovirus-produced version, despite the fact that
both recombinants induced comparable serological res-
ponses [8]. In addition, some glycan structures seem to be
helminth specific andarenot usedbyany other organism. In
this context, the use of parasite cell lines and Caenorhabdi-
tis elegansas expressionsystemshasbeenproposed [11–14].

Importance of study of the native antigen
In the past 5–10 years, vaccine research has focused
mainly on producing and testing recombinants from differ-
ent expression systems, without paying a lot of attention to
the native proteins themselves. For most of the antigens
listed in Table 1, there is no proof that the native proteins
can actually induce a protective response. Apart from the
cestode antigens, only ten vaccine candidates have been
tested in native form, either purified or as part of a
protective fraction (marked with an asterisk in Table 1).
All the other antigens were selected on the basis of immune
recognition, localization or presumed functional import-
ance for the parasite (marked in Table 1 with I, L or F,
respectively) and subsequently cloned for recombinant
expression. If the recombinant versions of such proteins
fail to induce protection in an animal trial, this could be
because the recombinant was not produced in a correct
form to induce a protective immune response, or because
the protein itself is not a genuine protective antigen. In
addition, even if prior knowledge is available that the
native antigen is protective, it also seems rational to
investigate what type of immune response needs to be
induced and which peptide and/or glycan epitopes are
involved in this before one can proceed to the expression
of an ‘immunologically active’ recombinant. Much empha-
sis is currently put on the importance of glycan. However,
although it is nowwell established that glycan residues can
be extremely immunogenic, there is no scientific evidence
(to our knowledge) that glycan epitopes are essential to
induce protection in vivo.

So why are the native proteins not analysed properly?
Possible reasons for this are timing and financial restric-
tions. It is, in many cases, difficult and time consuming to
purify native helminth antigens. Some antigens, such as
excretory–secretory products, are also scarce and very
expensive to produce in terms of donor animals. There is
also commercial pressure for fast results. Cloning and
expressing an antigen is often quicker and cheaper than
purifying the native version. Funding bodies are also more
inclined to fund projects that are more ‘high tech’ and focus
on ‘new generation’ vaccines based on recombinant DNA
technology. However, it is questionable whether expressing
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and testing selectedantigens,without testingandanalysing
the native protein, will be more cost effective in the long
term.

In our opinion,more time and effort should be invested in
the analysis of the native antigens.With the newgeneration
of liquid chromatography equipment, it is now easier to
separate and collect small amounts of protein. Mass spec-
trometry is also becoming a standard technique in reach for
many research laboratories. In combination with the exten-
sive parasite expressed sequence tag (EST) databases, they
provide a powerful analytical platform. In contrast to 10 or
15 years ago, it is now possible to identify almost every
componentofaprotectiveprotein fraction inamatterofdays
or weeks. In addition, new methods for glycan analysis are
currently leading to an explosion in information about
the structures of parasite-derived glycans [5]. The use of
these technologies, in combination with the advances in
epitope identification by phage display, peptide libraries
or bioinformatics [15], would give us crucial information
on the antigens and thus help to make a more well-founded
choice of expression system. In this context, new eukaryotic
expression systems are emerging that can be engineered in
their glycosylation pathway [16]. The use of such systems
would avoid inappropriate glycosylation and if modified
with helminth glycosyltransferasesmight theoretically pro-
duce a perfect copy of the native protein. Alternatively, if
glycanproves to be essential for protectionand impossible to
produce in an expression system, the synthetic synthesis of
carbohydrates might be a solution. This approach is cur-
rently being investigated in the search for vaccines against
malaria and leishmaniasis [17].

Concluding thoughts
The lack of appropriate expression systems is often put
forward as the big hurdle in the quest for recombinant
parasite vaccines. However, instead of promoting and test-
ingmore ‘high-tech’ expression systems, we should consider
the possibility that an in-depth analysis of the native anti-
gencould speedupthedevelopmentof recombinantvaccines
in the long term. Of course, although in this opinion article
we have focused solely on the importance of the antigen, it is
essential to note that there are a number of additional
parameters that are extremely important in vaccine de-
velopment. The route of administration, the adjuvants,
the use of model organisms, contaminating products from
the expression system, antigen cocktails, the challenge in-
fectionand, finally, themethod to assess the efficacyare also
crucial aspects that should be taken into account. In
addition, our expectations for a vaccine should be realistic.
For some helminths, such asO. ostertagi and F. hepatica, it
takes months to build up a natural protective immune
response. Expecting that a vaccine should reach a higher
level of protection in a shorter period is possibly too ambi-
tious. For a detailed discussion of these factors, refer to Ref.
[18].
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