10 research outputs found

    Construction and Use Examples of Private Electronic Notary Service in Educational Institutions

    Get PDF
    People have many documents. For example, a variety of documents are prepared and used in public institutions. As the internet becomes widely available in recent years, paper documents are being replaced with electronic data, which are often distributed in the form of electronic data without being printed out. Similarly, in educational institutions, increasing number of documents are distributed in the form of electronic data. Such data are distributed through various routes and means, and prone to the risk of alteration in the process. Data may be protected against alteration, but it is difficult to completely prevent data alteration in the distribution process. Data can be generated with electronic signature that allows for the identification of data creator and possible alterations by third parties. This method is, however, not valid if the data becomes separated from the electronic signature, making the validation of data creator or data alterations difficult or impossible. In this paper, we describe the invention of a system that, even in cases where data is separated form the electronic signature, enables easy identification of possible data alterations by the electronic signature management. And we describe here an exploratory construction of private electronic notary service in university. We also add a review on the utilization method of private electronic notary service in universities

    Construction and Use Examples of Private Electronic Notary Service in Educational Institutions

    Get PDF
    People have many documents. For example, a variety of documents are prepared and used in public institutions. As the internet becomes widely available in recent years, paper documents are being replaced with electronic data, which are often distributed in the form of electronic data without being printed out. Similarly, in educational institutions, increasing number of documents are distributed in the form of electronic data. Such data are distributed through various routes and means, and prone to the risk of alteration in the process. Data may be protected against alteration, but it is difficult to completely prevent data alteration in the distribution process. Data can be generated with electronic signature that allows for the identification of data creator and possible alterations by third parties. This method is, however, not valid if the data becomes separated from the electronic signature, making the validation of data creator or data alterations difficult or impossible. In this paper, we describe the invention of a system that, even in cases where data is separated form the electronic signature, enables easy identification of possible data alterations by the electronic signature management. And we describe here an exploratory construction of private electronic notary service in university. We also add a review on the utilization method of private electronic notary service in universities

    Telemedicine patient identification with RFID; an embedded approach

    Get PDF
    Radio Frequency Identification (RFID) has potential for application in the new field of telemedicine, as the use of radio waves offers advantages over traditional optical technology such as bar codes. Radio waves are not limited by line of sight, they can penetrate objects and communicate in a wireless fashion. However, the same advantage is also the inherent weakness, as radio waves are susceptible to attack. Ongoing efforts have identified forward secure chain hashing as a viable security protocol for RFID authentication. Today\u27s typical RFID communications take place with the host-reader-tag arrangement where the computational requirements are performed by a back end server system which holds all the intelligence and houses all records for an entire facility. One server can easily utilize multiple readers, but a compromise of this single system could have serious ramifications. Why not make a smaller system that is more robust and tolerant of intrusion. This can be achieved by implementing a stand alone reader that relies only on itself. We propose a server-less system that can accomplish the same results. Because our enhanced reader does not require a server to perform its function, if any readers are breached it only impacts that specific reader, not the entire server. By eliminating the resource heavy server device, we can yield a more robust overall system. We have selected a forward secure protocol to implement on an embedded platform that will be able to authenticate a tag without the resources of a back end server

    An FPGA architecture for the recovery of WPA/WPA2 keys

    Get PDF
    Wi-Fi protected access (WPA) has provided serious improvements over the now deprecated wired equivalent privacy protocol (WEP). WPA, however, still has some flaws that allow an attacker to obtain the passphrase. One of these flaws is exposed when the access point (AP) is operating in the WPA personal mode. This is the most common mode as it is the quickest and easiest to configure. It requires the attacker to capture the traffic from four-way handshake between the AP and client, and then provide enough compute time to reverse the passphrase. Attackers quickly noticed that by investing the compute time in advance, and storing their work, they could decrease the time-to-crack for an AP. This caused attackers to start compiling large lookup tables based on dictionaries of common passwords and common SSIDs. The attackers are required to compile a separate lookup table for each SSID, making this style of attack most feasible against APs with a common SSID and password. The work in this thesis will focus on creating an FPGA based architecture to accelerate the generation of the lookup table, given a dictionary of possible Pre-shared Keys and an SSID. The application of this work would be most useful for attacking one-off SSID\u27s. This is because most common SSID\u27s already have a generated lookup table that can be downloaded much faster than it could be generated, so this regeneration would be wasteful. The application will also provide a manner to check for a valid Pairwise Master Key during the table generation phase

    Design Time Optimization for Hardware Watermarking Protection of HDL Designs

    Get PDF
    HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time

    Blockchain, business and the fourth industrial revolution:Whence, whither, wherefore and how?

    Get PDF
    Blockchain is one the most remarkable technological innovations of the 21st century. The most notable application of blockchain is in the development and operation of cryptocurrencies (e.g. bitcoin, ethereum, among others). Besides the financial services industry, blockchain is also considered in other sectors such as international trade, taxation, supply chain management, business operations and governance. However, blockchain has not been examined comprehensively in all areas of relevant literature. This article conducts a survey of the literature to gain an understanding of the opportunities and issues presented by blockchain in various business functions. The article begins by providing a discussion regarding how the blockchain technology operates. The paper takes a broad focus in its analysis of the prospects of blockchain for various business functions, including banking and the capital markets, corporate governance, international trade, and taxation. The paper demonstrates how organisations and regulators can leverage blockchain to upscale business operations, enhance efficiency and reduce operational costs. The key drawbacks of blockchain that stakeholders need to bear in mind before adopting the technology are also highlighted. The article also reflects on how organisations can tap into blockchain to reap the full potential of the fourth industrial revolution

    Energy-efficient and cost-effective reliability design in memory systems

    Get PDF
    Reliability of memory systems is increasingly a concern as memory density increases, the cell dimension shrinks and new memory technologies move close to commercial use. Meanwhile, memory power efficiency has become another first-order consideration in memory system design. Conventional reliability scheme uses ECC (Error Correcting Code) and EDC (Error Detecting Code) to support error correction and detection in memory systems, putting a rigid constraint on memory organizations and incurring a significant overhead regarding the power efficiency and area cost. This dissertation studies energy-efficient and cost-effective reliability design on both cache and main memory systems. It first explores the generic approach called embedded ECC in main memory systems to provide a low-cost and efficient reliability design. A scheme called E3CC (Enhanced Embedded ECC) is proposed for sub-ranked low-power memories to alleviate the concern on reliability. In the design, it proposes a novel BCRM (Biased Chinese Remainder Mapping) to resolve the address mapping issue in page-interleaving scheme. The proposed BCRM scheme provides an opportunity for building flexible reliability system, which favors the consumer-level computers to save power consumption. Within the proposed E3CC scheme, we further explore address mapping schemes at DRAM device level to provide SEP (Selective Error Protection). We explore a group of address mapping schemes at DRAM device level to map memory requests to their designated regions. All the proposed address mapping schemes are based on modulo operation. They will be proven, in this thesis, to be efficient, flexible and promising to various scenarios to favor system requirements. Additionally, we propose Free ECC reliability design for compressed cache schemes. It utilizes the unused fragments in compressed cache to store ECC. Such a design not only reduces the chip overhead but also improves cache utilization and power efficiency. In the design, we propose an efficient convergent cache allocation scheme to organize the compressed data blocks more effectively than existing schemes. This new design makes compressed cache an increasingly viable choice for processors with requirements of high reliability. Furthermore, we propose a novel, system-level scheme of memory error detection based on memory integrity check, called MemGuard, to detect memory errors. It uses memory log hashes to ensure, by strong probability, that memory read log and write log match with each other. It is much stronger than conventional protection in error detection and incurs little hardware cost, no storage overhead and little power overhead. It puts no constraints on memory organization and no major complication to processor design and operating system design. In the thesis, we prove that the MemGuard reliability design is simple, robust and efficient
    corecore