13 research outputs found

    Adaptive Resonance Theory and Diffusion Maps for Clustering Applications in Pattern Analysis

    Get PDF
    Adaptive Resonance is primarily a theory that learning is regulated by resonance phenomena in neural circuits. Diffusion maps are a class of kernel methods on edge-weighted graphs. While either of these approaches have demonstrated success in image analysis, their combination is particularly effective. These techniques are reviewed and some example applications are given

    Fuzzy adaptive resonance theory: Applications and extensions

    Get PDF
    Adaptive Resonance Theory, ART, is a powerful clustering tool for learning arbitrary patterns in a self-organizing manner. In this research, two papers are presented that examine the extensibility and applications of ART. The first paper examines a means to boost ART performance by assigning each cluster a vigilance value, instead of a single value for the whole ART module. A Particle Swarm Optimization technique is used to search for desirable vigilance values. In the second paper, it is shown how ART, and clustering in general, can be a useful tool in preprocessing time series data. Clustering quantization attempts to meaningfully group data for preprocessing purposes, and improves results over the absence of quantization with statistical significance. --Abstract, page iv

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Incremental Cluster Validity Indices for Online Learning of Hard Partitions: Extensions and Comparative Study

    Get PDF
    Validation is one of the most important aspects of clustering, particularly when the user is designing a trustworthy or explainable system. However, most clustering validation approaches require batch calculation. This is an important gap because of the value of clustering in real-time data streaming and other online learning applications. Therefore, interest has grown in providing online alternatives for validation. This paper extends the incremental cluster validity index (iCVI) family by presenting incremental versions of Calinski-Harabasz (iCH), Pakhira-Bandyopadhyay-Maulik (iPBM), WB index (iWB), Silhouette (iSIL), Negentropy Increment (iNI), Representative Cross Information Potential (irCIP), Representative Cross Entropy (irH), and Conn_Index (iConn_Index). This paper also provides a thorough comparative study of correct, under- and over-partitioning on the behavior of these iCVIs, the Partition Separation (PS) index as well as four recently introduced iCVIs: incremental Xie-Beni (iXB), incremental Davies-Bouldin (iDB), and incremental generalized Dunn\u27s indices 43 and 53 (iGD43 and iGD53). Experiments were carried out using a framework that was designed to be as agnostic as possible to the clustering algorithms. The results on synthetic benchmark data sets showed that while evidence of most under-partitioning cases could be inferred from the behaviors of the majority of these iCVIs, over-partitioning was found to be a more challenging problem, detected by fewer of them. Interestingly, over-partitioning, rather then under-partitioning, was more prominently detected on the real-world data experiments within this study. The expansion of iCVIs provides significant novel opportunities for assessing and interpreting the results of unsupervised lifelong learning in real-time, wherein samples cannot be reprocessed due to memory and/or application constraints

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv

    AUTONOMOUS ROBOT LEARNING MODEL BASED ON VISUAL INTERPRETATION OF SPATIAL STRUCTURES

    Get PDF
    The main concept of the presented research is an autonomous robot learning model for which a novel ARTgrid neural network architecture for the classification of spatial structures is used. The motivation scenario includes incremental unsupervised learning which is mainly based on discrete spatial structure changes recognized by the robot vision system. The learning policy problem is presented as a classification problem for which the adaptive resonance theory (ART) concept is implemented. The methodology and architecture of the autonomous robot learning model with preliminary results are presented. A computer simulation was performed with four input sets containing 22, 45, 73, and 111 random spatial structures. The ARTgrid shows a fairly high (>85%) match score when applied with already learned patterns after the first learning cycle, and a score of >95% after the second cycle. Regarding the category proliferation, the results are compared with a more predictive modified cluster centre seeking algorithm

    Planiranje robotskog djelovanja zasnovano na tumačenju prostornih struktura

    Get PDF
    Robot je programabilan mehanizam čije se djelovanje temelji na upravljačkim algoritmima. Prilikom rada u nestrukturiranoj okolini upravljački algoritmi postaju eksplicitne funkcije položaja i vremena u povratnoj vezi sa stanjem okoline. Obradu podataka iz okoline te zaključivanje o odgovarajućem djelovanju robota moguće je temeljiti na principima strojnoga učenja. Predloženo istraživanje bavi se razvojem modela učenja i planiranja djelovanja robota. Proces učenja temelji se na novoj umjetnoj neuronskoj mreži klasifikacijom prostornih struktura. Pojam prostorne strukture podrazumijeva interpretaciju rasporeda poznatih objekata u ravnini koje robot percipira vizijskim sustavom. Umjetna neuronska mreža za klasifikaciju i prepoznavanje prostornih struktura zasniva se na teoriji adaptivne rezonancije. Planiranje djelovanja robota temeljno je na usporednoj evoluciji rješenja razvojem novoga genetskoga algoritma. Genetski algoritam kao osnovni cilj ima prostornu pretvorbu neuređenoga stanja objekata u uređeno. Izvorni znanstveni doprinos rada očituje se u sljedećem: 1) Samoorganizirajuća umjetna neuronska mreža za klasifikaciju i prepoznavanje prostornih struktura zasnovana na teoriji adaptivne rezonancije, koju odlikuje nova dvorazinska klasifikacija po obliku i rasporedu objekata te mehanizam asocijativnoga povezivanja neuređenoga skupa objekata s uređenim i 2) Novi genetski algoritam za planiranje robotskoga djelovanja u nestrukturiranoj radnoj okolini karakteriziran usporednom evolucijskom strategijom za pronalaženje rješenja, s ciljem prostorne pretvorbe neuređenoga stanja objekata u uređeno
    corecore