5 research outputs found

    ANN based short-term traffic flow forecasting in undivided two lane highway

    Get PDF
    Abstract Short term traffic forecasting is one of the important fields of study in the transportation domain. Short term traffic forecasting is very useful to develop a more advanced transportation system to control traffic signals and avoid congestions. Several studies have made efforts for short term traffic flow forecasting for divided and undivided highways across the world. However, all these studies relied on the dataset which are greatly varied between countries due to the technology used for transportation data collection. India is a developing country in which efforts are being done to improve the transportation system to avoid congestion and travel time. Two-lane undivided highways with mixed traffic constitute a large portion of Indian road network. This study is an attempt to develop a short term traffic forecasting model using back propagation artificial neural network for two lane undivided highway with mixed traffic conditions in India. The results were compared with random forest, support vector machine, k-nearest neighbor classifier, regression tree and multiple regression models. It was found that back-propagation neural network performs better than other approaches and achieved an R2 value 0.9962, which is a good score

    TOWARDS AN EFFICIENT TRAFFIC CONGESTION PREDICTION METHOD BASED ON NEURAL NETWORKS AND BIG GPS DATA

    Get PDF
    ABSTRACT: The prediction of accurate traffic information such as speed, travel time, and congestion state is a very important task in many Intelligent Transportations Systems (ITS) applications. However, the dynamic changes in traffic conditions make this task harder. In fact, the type of road, such as the freeways and the highways in urban regions, can influence the driving speeds and the congestion state of the corresponding road. In this paper, we present a NNs-based model to predict the congestion state in roads. Our model handles new inputs and distinguishes the dynamic traffic patterns in two different types of roads: highways and freeways. The model has been tested using a big GPS database gathered from vehicles circulating in Tunisia. The NNs-based model has shown their capabilities of detecting the nonlinearity of dynamic changes and different patterns of roads compared to other nonparametric techniques from the literature. ABSTRAK: Ramalan maklumat trafik yang tepat seperti kelajuan, masa perjalanan dan keadaan kesesakan adalah tugas yang sangat penting dalam banyak aplikasi Sistem Pengangkutan Pintar (ITS). Walau bagaimanapun, perubahan keadaan lalu lintas yang dinamik menjadikan tugas ini menjadi lebih sukar. Malah, jenis jalan raya, seperti jalan raya dan lebuh raya di kawasan bandar, boleh mempengaruhi kelajuan memandu dan keadaan kesesakan jalan yang sama. Dalam makalah ini, kami membentangkan model berasaskan NN untuk meramalkan keadaan kesesakan di jalan raya. Model kami mengendalikan input baru dan membezakan corak trafik dinamik dalam dua jenis jalan raya yang lebuh raya dan jalan raya. Model ini telah diuji menggunakan pangkalan data GPS yang besar yang dikumpulkan dari kenderaan yang beredar di Tunisia. Model berasaskan NNs telah menunjukkan keupayaan mereka untuk mengesan ketiadaan perubahan dinamik dan pola jalan yang berbeza berbanding dengan teknik nonparametrik yang lain dari kesusasteraan

    Implementation of Artificial Intelligence in Traffic Management in the United States

    Get PDF
    This paper investigates the application and deployment of artificial intelligence (AI) in enhancing traffic management within the U.S., focusing mainly on predicting future traffic demand using machine learning and deep learning models. Utilizing datasets from the Tom-Tom Traffic Index and the Python programming language for data processing, the study aims to mitigate traffic congestion through accurate traffic prediction. The study specifically examines Baltimore, Maryland (used as a proxy for major U.S. cities) to assess the efficiency of AI technologies on traffic levels and provides a comparative analysis of machine learning and deep learning algorithms (decision tree, random forest, logistic regression, and deep learning neural network). The results revealed that decision tree models surpass other algorithms with an 85% accuracy rate in congestion prediction. The study contemplates the technical aspects of traffic management systems and addresses the practical implications for city planning and the overarching goals of reducing congestion and facilitating transportation logistics. The paper offers valuable insights to transportation planners, logistics managers, and academic researchers.
    corecore