387,749 research outputs found
Optical monitoring system for scalable all-optical networks
High traffic and high capacity communications are believed to become cost-effective with the use of all-optical networks based on OFDM (optical frequency division multiplexing). In such networks, new strategies for OA and M (operation, administration and maintenance) functions need to be developed so as to suit the introduction of a new optical layer where in wavelength routing is exploited and faults are detected in a transparent manner. In this paper, we propose a scheme to monitor optical channels in the optical layer for supporting OA and M functions of a transparent and scalable photonic network.Peer ReviewedPostprint (published version
High speed all optical networks
An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail
Ultrafast all-optical signal processing how and why?
Demand for fast and secure high capacity networks is growing. Currently offered solutions are hampered by the reappearance of electronic bottleneck. It is believed that to fully utilize transmission bandwidth of optical networks ultrafast all-optical signal processing may need to by implemented. Such approaches will be discussed
Cross-connection management specialisation for WDM-OTN's
WDM optical transport networks (WDM-OTN) will use new all-optical nodes that will perform functions in the optical domain, using wavelength as a new network resource. This paper presents a new approach for the optical cross-connect (OXC) routing operation that takes into account a diminished connection capability.Peer ReviewedPostprint (published version
Quantum optical waveform conversion
Currently proposed architectures for long-distance quantum communication rely
on networks of quantum processors connected by optical communications channels
[1,2]. The key resource for such networks is the entanglement of matter-based
quantum systems with quantum optical fields for information transmission. The
optical interaction bandwidth of these material systems is a tiny fraction of
that available for optical communication, and the temporal shape of the quantum
optical output pulse is often poorly suited for long-distance transmission.
Here we demonstrate that nonlinear mixing of a quantum light pulse with a
spectrally tailored classical field can compress the quantum pulse by more than
a factor of 100 and flexibly reshape its temporal waveform, while preserving
all quantum properties, including entanglement. Waveform conversion can be used
with heralded arrays of quantum light emitters to enable quantum communication
at the full data rate of optical telecommunications.Comment: submitte
- …
