105,317 research outputs found

    Planning and Proof Planning

    Get PDF
    . The paper adresses proof planning as a specific AI planning. It describes some peculiarities of proof planning and discusses some possible cross-fertilization of planning and proof planning. 1 Introduction Planning is an established area of Artificial Intelligence (AI) whereas proof planning introduced by Bundy in [2] still lives in its childhood. This means that the development of proof planning needs maturing impulses and the natural questions arise What can proof planning learn from its Big Brother planning?' and What are the specific characteristics of the proof planning domain that determine the answer?'. In turn for planning, the analysis of approaches points to a need of mature techniques for practical planning. Drummond [8], e.g., analyzed approaches with the conclusion that the success of Nonlin, SIPE, and O-Plan in practical planning can be attributed to hierarchical action expansion, the explicit representation of a plan's causal structure, and a very simple form of propo..

    The Use of Proof Planning for Cooperative Theorem Proving

    Get PDF
    AbstractWe describebarnacle: a co-operative interface to theclaminductive theorem proving system. For the foreseeable future, there will be theorems which cannot be proved completely automatically, so the ability to allow human intervention is desirable; for this intervention to be productive the problem of orienting the user in the proof attempt must be overcome. There are many semi-automatic theorem provers: we call our style of theorem provingco-operative, in that the skills of both human and automaton are used each to their best advantage, and used together may find a proof where other methods fail. The co-operative nature of thebarnacleinterface is made possible by the proof planning technique underpinningclam. Our claim is that proof planning makes new kinds of user interaction possible.Proof planning is a technique for guiding the search for a proof in automatic theorem proving. Common patterns of reasoning in proofs are identified and represented computationally as proof plans, which can then be used to guide the search for proofs of new conjectures. We have harnessed the explanatory power of proof planning to enable the user to understand where the automatic prover got to and why it is stuck. A user can analyse the failed proof in terms ofclam's specification language, and hence override the prover to force or prevent the application of a tactic, or discover a proof patch. This patch might be to apply further rules or tactics to bridge the gap between the effects of previous tactics and the preconditions needed by a currently inapplicable tactic

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements

    Full text link
    Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence

    On the complete instability of empirically implemented dynamic Leontief models

    Get PDF
    On theoretical grounds, real world implementations of forward-looking dynamic Leontief systems were expected to be stable. Empirical work, however, showed the opposite to be true: all investigated systems proved to be unstable. In fact, an extreme form of instability ('complete instability') appeared to be the rule. In contrast to this, backward-looking models and dynamic inverse versions appeared to be exceptionally stable. For this stability-instability switch a number of arguments have been put forward, none of which was convincing. Dual (in)stability theorems only seemed to complicate matters even more. In this paper we offer an explanation. We show that in the balanced growth case--under certain conditions--the spectrum of eigenvalues of matrix D equivalent to (I - A)-1B, where A stands for the matrix of intermediate input coefficients and B for the capital matrix, will closely approximate the spectrum of a positive matrix of rank one. From this property the observed instability properties are easily derived. We argue that the employed approximations are not unrealistic in view of the data available up to now

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering
    corecore