

Edinburgh Research Explorer

Planning and Proof Planning

Citation for published version:
Melis, E & Bundy, A 1996, 'Planning and Proof Planning' Paper presented at ECAI-96 Workshop on Cross-
Fertilization in Planning, Budapest, Hungary, 13/08/96, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/planning-and-proof-planning(55bd780a-bc95-48ed-ba86-065f44bcaea7).html

Planning and Proof Planning
Erica Melis1 and Alan Bundy2

Abstract. The paper adresses proof planning as a specific AI plan-
ning. It describes some peculiarities of proof planning anddiscusses
some possible cross-fertilization of planning and proof planning.

1 Introduction

Planning is an established area of Artificial Intelligence (AI) whereas
proof planning introduced by Bundy in [2] still lives in its childhood.
This means that the development of proof planning needs maturing
impulses and the natural questions arise `What can proof planning
learn from its Big Brother planning?' and `What are the specific char-
acteristics of the proof planning domain that determine theanswer?' .
In turn for planning, the analysis of approaches points to a need of
mature techniques for practical planning. Drummond [8], e.g., an-
alyzed approaches with the conclusion that the success of Nonlin,
SIPE, and O-Plan in practical planning can be attributed to hierar-
chical action expansion, the explicit representation of a plan's causal
structure, and a very simple form of propositional resourceallocation
rather than to “precondition achievement” which is the predominant
formulation of planning in the AI community. Therefore the tech-
niques of proof planning that succeeded so far might be of interest
for other application areas and problem classes.
To provide a feeling, under which conditions approaches or tech-
niques from proof planning can be adopted for planning in realistic
environments, we discuss some important features of the proof plan-
ning domain. In order to contribute to a cross-fertilization of AI
planning and proof planning, we briefly describe lessons that can
be learned from planning or proof planning.. This paper extends a
description given in [3].

2 Proof Planning

While humans can cope with long and complex proofs and have
strategies to avoid less promising proof paths, automated theorem
proving suffers from exhaustive search in super-exponential search
spaces. Some empirical sources [19, 9] provide evidence that math-
ematicians use specific methods (e.g. diagonalization), intelligently
guide the search for proofs, and plan a proof during the proofdiscov-
ery process. E.g., the German mathematician Faltings, who proved
Mordell's Conjecture, described in [9] that “We know from experience
that certain inferences are usually successful under certain prerequi-
sites. So first we ponder about a reasonable way to proceed to prove
the theorem. In other words, we roughly plan: If we get a certain
result the next result will follow and then the next etc. Afterwards we
have to fill in the details, and to check whether the plan really works.”

1 Universität des Saarlandes, Fachbereich Informatik, D-66041 Saarbrücken,
Germany. email: melis@cs.uni-sb.de

2 University of Edinburgh, Dept. of AI 80 South Bridge, Edinburgh EH1 1HN,
UK. email: bundy@aisb.ed.ac.uk

These insights make proof planning intriguing for interactive as well
as for automated theorem proving.
Bundy [2] and his group in Edinburgh pioneeredproof planningas
a technique that can be considered AI-planning and that employs
an intelligent guidance of proofs. This work resulted in theproof
plannerCLAM [22] that plans proofs by mathematical induction and
that performs little average search.
Proof planning contrast with the more local heuristics which have pre-
viously been used for search control (in automated theorem proving).
That is, instead of making separate decisions at each choicepoint of
proving at the (low) level of logical inferences, based on local clues,
proof planning has some sense of the overall direction of theproof.
The global search control is achieved by joining two roads, (1) the
use of tactics and (2) meta-level control:

1. As opposed to traditional automated theorem that appliescalculus-
level inference rules, i.e. low level inferences, proof planning relies
on tactics [10]. Tactics are procedures that produce a (not neces-
sarily fixed) sequenceof lower level inferences when executed, for
instance a sequenceof logical inferences at the calculus-level. Pre-
viously, tactics have already been employed in several interactive
theorem provers, e.g. Nuprl [6].
In order to enable a combination of tactical theorem provingwith
meta-level control, Bundy [2] introducedmethodsas (partial) spec-
ifications of tactics that specify in a meta-language the precondi-
tions and effects of its application3. In Figure 1 the structure ofCLAM 's methods is depicted. The methods serve as planning op-
erators whose application yields the sequents from the output slot
as subgoals. These preconditions contain control knowledge.They

name: Prolog term
input: sequent H==>G, H set of hypotheses, G goal
precondition: list of conjuncts in meta-level language
postcondition: list of conjuncts in meta-level language
output: list of sequents
tactic: Prolog term

Figure 1. The method data structure inCLAM .

describe in a meta-language (1) syntactic properties of object-level
expressions (sequents and formulas)E that are subgoals or ele-
ments of the initial state (definitions or axioms) or (2) abstract
properties of these expressions that emerge fromannotationsto

3 Note that these preconditions and effects of the methods inCLAMdenote
things different from input and output which consist of sequents. Sequents
are of the form∆ ` F , where∆ is a set of formulas andF is a formula.

E. An example of the first kind of preconditions is “E has a
free variable”. An example of the second kind of preconditions is
“There is a recorded definitionR of the form (lhs -> rhs) such
that the annotatedlhs matches a subexpression of the annotatedE while preserving the annotations.”

2. The meta-level control came into play by (a) recognizing common
proof plan patterns in families of proofs, for instance in proofs by
mathematical induction or in diagonalization proofs, and by (b)
discovering abstract goals and abstract heuristics that can guide
the search for proofs.

(a) Proofs by mathematical induction4reveal a common general
structure displayed in Figure 2. This pattern is roughly to first

Base case

Symbolic evaluation

Simplification

Tautology checking

Step case

Induction

Fertilization

Rippling

Figure 2. Structure of proofs by mathematical induction

find an appropriate induction schema and then to prove the con-
jecture for the base case, e.g., forn = 0, and for the step case,
where the conjecture for a “successor”of the induction variable,
e.g. ofn, (called the induction conclusion) is proved provided
the conjecture for the induction variable itself (which is called
the induction hypothesis) holds. The step case pattern includes
some kind of “fertilization”, i.e., of applying the induction hy-
pothesis to a rewritten induction conclusion such that a true
formula results.
The rewriting is subject to the abstract heuristicrippling de-
scribed next.

(b) A meta-level goal in the step case is to reduce the differences
between induction conclusion and induction hypothesis in order
to enable a final fertilization. These differences are represented
by annotations, e.g., colours, to the induction conclusion. Ax-
ioms and definitions that belong to the initial state and which
can be used to reduce the differences are annotated similarly.
The abstract search heuristic for proofs by mathematical induc-
tion, rippling, was introduced by Bundy [2] and Hutter [12].
It describes a systematic way to remove the differences, for
example by moving the differences outward until the induc-
tion hypothesis can be applied to an inner part of the rewritten
induction conclusion. For example, in proving the conjecture8x; y; z: x+ (y+ z) = (x+ y) + z (1)

4 Mathematical induction is a generalization of the well known pattern
of Peano induction over natural numbers that has the induction schemaP (0);8k(P (k)!P (k+1))8n(P (n)) .

the induction hypothesis isx+ (y + z) = (x+ y) + z (2)

and the conclusion iss(x) + (y + z) = (s(x) + y) + z (3)

The boxes, excluding the underlined terms, denote the differ-
ences. The non-differences are called theskeleton. Rippling
works by successively applying skeleton preserving definitions
and axioms to the induction conclusion. A definition of the
function + is s(U) + V) s(U + V) (4)

where the skeleton on each side of the implication isU + V .
In this example, rippling involves the repeated application of
(4) which moves the differences outwards until the following
expression is obtaineds(x+ (y + z)) = s((x+ y) + z) (5)

to which the induction hypothesis can be applied.CLM 's preconditions and effects of methods allow to plan (to
reason about) the application of tactics not just by “precondition
achievement” but supported by the meta-level control provided by
rippling. InCLAM a proof plan is then built as a tree of methods
by searching the plan-space.

Due to the urgently needed search control in theorem proving, proof
planning became more popular recently. Apart from the systemCLAM ,
other experiments explore different ways to realize proof planning.
For instance, the proof planner of Omega [11] performs state-space
search. As opposed toCLAM , it prefers more declaratively repre-
sented methods the output of which is determined by the input. Those
methods can be subject to reformulations. The method representation
in Omega allows for different level of goals which naturallyleads to
hierarchical planning.

The fact that proof plans are anabstractandstructuredrepresenta-
tion of proofs makes proof planning and, in particular, proof plans
attractive for other activities in theorem proving:� The abstract and structured representation is well-suitedfor theo-

rem proving by analogy, as shown in [17]. The structure of a proof
plan can be exploited when analogically transferring methods and
subplans.As opposedto analogy at an abstract level, the analogical
transfer often fails if drawn at the low level of logical inference
rules.� For derivational analogy [5, 24, 17], proof plans that storecontrol
information are needed.� Proof plans that store control information are also well-suited for
the explanation of proofs and for user interaction as, e.g.,pursued
in Barnacle [16], an interactive version ofCLAM . There, explana-
tions are extracted from the preconditions ofCLAM 's methods.� As demonstrated in [15], a structured presentation of a proof has
proved very important for the human understanding of proofsand
is, therefore, needed for proof presentation and interactive theorem
proving.

3 Properties of Proof Planning

Proof planning is a specific plan formation in the “precondition
achievement” sense of AI-planning, and as an experiment theau-
thor has implemented a simple theorem proving domain in Prodigy.
Specific characteristics of this “domain” are:� The objects are (mathematical) objects such as numbers, lists, or

trees and actions are manipulations of formulas describingobjects
and their relations and functions.� Formal mathematical proofs which theorem proving aims at, are
often long and very complex and even proof plans can be very deep.
Therefore the need to represent bigger chunks by a planning op-
erator and to understand a proof plan as an abstract representation
of a proof.� Goal interaction which is a major issue for plan formation in
general and led to the development of partial order planning[21,
20]. In proof planning there is no goal interaction in the original
object-level sense because the application of a sequence oflogical
inference rules does not destroy object-level preconditions.� The acquisition of methods and of control knowledge for mathe-
matical domains is difficult. It took, for instance, quite some time
to polishCLAM 's methods that at first simulated procedures from
the Nqthm theorem prover. NowCLAM gets a long way with few
methods for planning inductive proofs. We expect the acquisition
of control knowledge and methods to be a major research problem
for mathematical domains.� In proof planning, the knowledge about the mathematical world
is complete and certain rather than incomplete and uncertain as in
many real world applications of planning.

4 Lessons from Planning and Proof Planning

As Weld [25] summarizes, in planning, knowledge-based search via
a miniature production system turned out to be a good idea. Usually,
these rules refer to local decisions. They can, however, also express
control knowledge referring to the global development of a plan.
First, in SOAR [14] such a control was explored and in the Prodigy
system [18] the ideas were refined. Such a control is also described in
[1]. Meta-level control-rules can be found in Press [4]. In Prodigy the
control-rules contain meta-predicates that refer to the current state,
the sequence of operators, etc. The experiences with a separate body
of control-rules in Prodigy are summarized in [23]: The advantage of
the factual-control knowledge distinction are modularity, reification
of the control knowledge, selectivity in building learningmodules,
and compositionality of the acquired control knowledge. InSOAR
and Prodigy matching algorithms and data structures have been de-
veloped to cope efficiently with many control-rules (see [7]). These
experiences can help to design proof planning systems that make use
of the advantages mentioned.

Currently, the most interesting feature of proof planning that could
fertilize planning seems to be that abstract goals are pursued by heuris-
tics expressed in a meta-language. In particular, the abstract control
knowledge might be of interest for planning in real environments.
The design of meta-predicates that capture proof-relevantabstrac-
tions, e.g., those involved in rippling, gives an additional means of
control and thus, adds to the power of the proof planner. Thereby
proof planning becomes more than pure precondition achievement.
Macro-operators as investigated in [13] are a first step towards plan
patterns and therefore of interest for proof planning. Theycorrespond
to fixed patterns of (sub)plans. For proof planning, however, we need

to find even more flexible patterns in order to structure a proof as the
experience with proofs by mathematical induction shows. InCLAM ,
an iteration over several submethods can provide a flexible pattern
represented by a supermethod. This idea might help in planning to
obtain plan patterns/macros that can be expanded flexibly.
Some clever hierarchical planning is needed in proof planning. So far,
two different techniques for hierarchical planning are used.CLAM
realizes hierarchical planning by flexibly expanding (super)methods
to a sequence of (sub)methods from a subset of methods. The output
of a super-method is determined by applying the submethods.In
Omega hierarchical planning is realized by explicitly marking less
relevant proof obligations (subgoals) that can be planned for in the
next lower hierarchical level. This will be amended by meta-level
criteria for distingishing the hierarchy levels.

REFERENCES

[1] A. Barrett, K. Golden, J.S. Penberthy, and D. Weld,USPOP User's
Manual, Version 2.0, Dept.of Computer Science and Engineering, Uni-
versity of Washington, 1993. Technical Report 93-09-06.

[2] A. Bundy, `The use of explicit plans to guide inductive proofs' , inProc.
9th International Conference on Automated Deduction (CADE), eds.,
E. Lusk and R. Overbeek, volume 310 ofLecture Notes in Computer
Science, pp. 111–120, Argonne, (1988). Springer.

[3] A. Bundy, `Proof planning' , inProceedings of the International Con-
ference on Planning 1996 (AIPS-96, (1996).

[4] A. Bundy and B. Welham, `Using meta-level inference for selective ap-
plication of multiple rewrite rules in algebraic manipulation' ,Artificial
Intelligence, 16(2), 189–212, (1981). Also available from Edinburgh as
DAI Research Paper 121.

[5] J.G. Carbonell, `Derivational analogy: A theory of reconstructive prob-
lem solving and expertise acquisition' , inMachine Learning: An Arti-
ficial Intelligence Approach, eds., R.S. Michalsky, J.G. Carbonell, and
T.M. Mitchell, 371–392, Morgan Kaufmann Publ., Los Altos, (1986).

[6] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cre-
mer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P.Pana-
gaden, J.T. Sasaki, and S.F. Smith,Implementing Mathematics with the
Nuprl ProofDevelopmentSystem, Prentice Hall, EnglewoodCliffs, New
Jersey, 1986.

[7] R.B. Doorenbos,Production Matching for Large Learning Systems,
Ph.D. dissertation, Computer Science Department, Carnegie Mellon
University, January 1995.

[8] M. Drummond, `On precondition achievement and the computational
economics of automatic planning' , inCurrent Trends in AI Planning,
6–13, IOS Press, (1994).

[9] G. Faltings and U. Deker, `Interview: Die Neugier, etwasganz genau
wissen zu wollen' ,bild der wissenschaft, (10), 169–182, (1983).

[10] M. Gordon, R. Milner, and C.P. Wadsworth,Edinburgh LCF: A Mech-
anized Logic of Computation, Lecture Notes in Computer Science 78,
Springer, Berlin, 1979.

[11] X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and
J. Siekmann, `Omega-MKRP: A Proof Development Environment' , in
Proc. 12th International Conference on Automated Deduction (CADE),
Nancy, (1994).

[12] D. Hutter, `Guiding inductive proofs' , inProc. of 10th International
Conference on Automated Deduction (CADE), ed., M.E. Stickel, volume
Lecture Notes in Artificial Intelligence 449. Springer, (1990).

[13] R.E. Korf, `Macro-operators: A weak method for learning' , Artificial
Intelligence, 26, 35–77, (1985).

[14] J Laird, A. Newell, and P. Rosenbloom, `SOAR:an architecture for
general intelligence' ,Artificial Intelligence, 33(1), 1–64, (1987).

[15] U. Leron, `Structuring mathematical proofs' ,The American Mathemat-
ical Monthly, 90, 174–185, (1983).

[16] H. Lowe, A. Bundy, and D. McLean, `The use of proof planning for co-
operative theorem proving' , Research Paper 745, (1995). Submitted to

the special issue of the Journal of Symbolic Computation on graphical
user interfaces and protocols.

[17] E. Melis, `A model of analogy-driven proof-plan construction' , inPro-
ceedings of the 14th International Joint Conference on Artificial Intel-
ligence, pp. 182–189, Montreal, (1995).

[18] S. Minton, C. Knoblock, D. Koukka, Y. Gil, R. Joseph, andJ. Carbonell,
PRODIGY 2.0: The Manual and Tutorial, School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1989. CMU-CS-89-146.

[19] G. Polya,How to Solve it, 2nd ed. Doubleday, New York, 1957.
[20] E.D. Sacerdoti, `The nonlinear nature of plans' , inProceedings of the

Fourth International Joint Conference on Artificial Intelligence (IJCAI-
75), pp. 206–214, (1975).

[21] A. Tate, `Generating project networks' , inProceedings of the Fifth
International Joint Conference on Artificial Intelligence, pp. 888–893.
Morgan Kaufmann, (1977).

[22] F. van Harmelen, A. Ireland, S.Negrete, A. Stevens, andA. Smaill, `The
CLAM proof planner, usermanual and programmers manual' , Technical
Report version 2.0, University of Edinburgh, Edinburgh, (1993).

[23] Manuela Veloso, Jaime Carbonell, M. Alicia Pérez, Daniel Borrajo,
Eugene Fink, and Jim Blythe, `Integrating planning and learning: The
PRODIGY architecture' ,Journal of Experimental and Theoretical Ar-
tificial Intelligence, 81–120, (1995).

[24] M.M. Veloso, Planning and Learning by Analogical Reasoning,
Springer, Berlin, New York, 1994.

[25] D.S. Weld, `An introduction to least commitment planning' ,AI maga-
zine, 15(4), 27–61, (1994).

