-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Planning and Proof Planning

Citation for published version:
Melis, E & Bundy, A 1996, 'Planning and Proof Planning' Paper presented at ECAI-96 Workshop on Cross-
Fertilization in Planning, Budapest, Hungary, 13/08/96, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 20. Feb. 2015

https://core.ac.uk/display/28971049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/planning-and-proof-planning(55bd780a-bc95-48ed-ba86-065f44bcaea7).html

Planning and Proof Planning

Erica Méelist and Alan Bundy?

Abstract. The paper adresses proof planning as a specific Al planThese insights make proof planning intriguing for intereets well

ning. It describes some peculiarities of proof planning disdusses
some possible cross-fertilization of planning and proafpling.

1 Introduction

Planning is an established area of Artificial Intelligena8 (vhereas
proof planning introduced by Bundy in [2] still lives in ithitdhood.
This means that the development of proof planning needsringtu
impulses and the natural questions arise "What can proohpig
learn from its Big Brother planning?' and "What are the sfiechar-
acteristics of the proof planning domain that determinesthgwver?' .
In turn for planning, the analysis of approaches points te@@dnof
mature techniques for practical planning. Drummond [8§.,ean-

as for automated theorem proving.

Bundy [2] and his group in Edinburgh pioneeneof planningas
a technique that can be considered Al-planning and that @mpl
an intelligent guidance of proofs. This work resulted in greof
plannerC IAM[22] that plans proofs by mathematical induction and
that performs little average search.

Proof planning contrast with the more local heuristics vattieve pre-
viously been used for search control (in automated theorewing).
That is, instead of making separate decisions at each choineof
proving at the (low) level of logical inferences, based ccalxclues,
proof planning has some sense of the overall direction opthef.
The global search control is achieved by joining two road} tie
use of tactics and (2) meta-level control:

alyzed approaches with the conclusion that the success blirhlo 1. Asopposedto traditional automated theorem that apgéilesilus-

SIPE, and O-Plan in practical planning can be attributedie¢cah
chical action expansion, the explicit representation dba's causal
structure, and a very simple form of propositional resoailtzcation
rather than to “precondition achievement” which is the jpraéhant
formulation of planning in the Al community. Therefore trech-
niques of proof planning that succeeded so far might be efast
for other application areas and problem classes.

To provide a feeling, under which conditions approacheseoh+t
niques from proof planning can be adopted for planning itiséa
environments, we discuss some important features of thef ptan-
ning domain. In order to contribute to a cross-fertilizatiof Al
planning and proof planning, we briefly describe lessons taa
be learned from planning or proof planning.. This paper estea
description given in [3].

2 Proof Planning

While humans can cope with long and complex proofs and havd@recondition:

strategies to avoid less promising proof paths, automatedrém
proving suffers from exhaustive search in super-expoaeséarch
spaces. Some empirical sources [19, 9] provide evidenderthtn-
ematicians use specific methods (e.g. diagonalizatiot@lligently
guide the search for proofs, and plan a proof during the pagsafov-
ery process. E.g., the German mathematician Faltings, winep

Mordell's Conjecture, described in [9] thade know from experience

that certain inferences are usually successful under aepeerequi-
sites. So first we ponder about a reasonable way to proceemt@p

the theorem. In other words, we roughly plan: If we get a derta

result the next result will follow and then the next etc. Afterds we
have to fill in the details, and to check whether the plan seabrks’

1 Universitat des Saarlandes, Fachbereich InformatikD4d. Saarbriicken,
Germany. email: melis@cs.uni-sh.de

2 University of Edinburgh, Dept. of Al 80 South Bridge, Edimgh EH1 1HN,
UK. email: bundy@aisb.ed.ac.uk

level inferencerules, i.e. low level inferences, proofplang relies
on tactics [10]. Tactics are procedures that produce a (@cesr
sarily fixed) sequence of lower level inferences when exador
instance a sequence of logical inferences at the calcelied-Pre-
viously, tactics have already been employed in severaidntee
theorem provers, e.g. Nuprl [6].

In order to enable a combination of tactical theorem provwirith
meta-level control, Bundy [2] introducedethods:s (partial) spec-
ifications of tactics that specify in a meta-language theneli-
tions and effects of its applicatidmtn Figure 1 the structure of

CIAM's methods is depicted. The methods serve as planning op-

erators whose application yields the sequents from theubstpt
as subgoals. These preconditions contain control knoveletiiey

name:
input:

Prolog term

list of conjuncts in meta-level language
postcondition: list of conjuncts in meta-level language
output: list of sequents

tactic: Prolog term

Figurel. The method data structure (nZAM.

describe in a meta-language (1) syntactic properties efuti¢vel
expressions (sequents and formul&sthat are subgoals or ele-
ments of the initial state (definitions or axioms) or (2) abst
properties of these expressions that emerge fesmotationsto

3 Note that these preconditions and effects of the method#linA/denote
things different from input and output which consist of seqts. Sequents
are of the formA - F', whereA is a set of formulas andl' is a formula.

sequent H==>G, H set of hypotheses, G goal

E. An example of the first kind of preconditions i“has a
free variable”. An example of the second kind of precondiies
“Thereis arecorded definitioR of the form (hs -> rhs) such
that the annotatelths matches a subexpression of the annotated
E while preserving the annotations.”

. The meta-level control came into play by (a) recognizioghmon
proof plan patterns in families of proofs, for instance ingfis by
mathematical induction or in diagonalization proofs, ayd(l)
discovering abstract goals and abstract heuristics thagcéde
the search for proofs.

(@) Proofs by mathematical inductitreveal a common general
structure displayed in Figure 2. This pattern is roughly tetfi

Induction

Base case
Symbolic evaluation
Simplification
Tautology checking

Step case

Rippling
Fertilization

Figure 2. Structure of proofs by mathematical induction

the induction hypothesis is

r+(y+z)=(x+y) +=z @)
and the conclusionis
s(z) +(y+Z)=(+y)+z (3)

The boxes, excluding the underlined terms, denote therdiffe
ences. The non-differences are called gkeleton Rippling
works by successively applying skeleton preserving dégimst
and axioms to the induction conclusion. A definition of the

function +is

where the skeleton on each side of the implicatioWig- V.
In this example, rippling involves the repeated applicaid
(4) which moves the differences outwards until the follogvin
expression is obtained

4)

s+ y+2)|=|s(le+y) +2) ®)

to which the induction hypothesis can be applied.

CIM's preconditions and effects of methods allow to plan (to
reason about) the application of tactics not just by “preiition
achievement” but supported by the meta-level control grediby
rippling. In CIAM a proof plan is then built as a tree of methods
by searching the plan-space.

(b)

Due to the urgently needed search control in theorem proyirapf

planning became more popular recently. Apart from the systéAM ,
find an appropriate induction schema and then to prove the corother experiments explore different ways to realize prdahping.
jecture for the base case, e.g., for= 0, and for the step case, For instance, the proof planner of Omega [11] performs stptee
where the conjecture for a “successor” of the inductionalzleé, ~ search. As opposed ©IAM, it prefers more declaratively repre-
e.g. ofn, (called the induction conclusion) is proved provided sented methods the output of which is determined by the iffjnaise
the conjecture for the induction variable itself (which &lled ~ methods can be subjectto reformulations. The method reptation
the induction hypothesis) holds. The step case patterndesl in Omega allows for different level of goals which naturdéads to
some kind of “fertilization”, i.e., of applying the inducth hy- hierarchical planning.
pothesis to a rewritten induction conclusion such that a tru
formula results.
The rewriting is subject to the abstract heurigtijgpling de-
scribed next.
A meta-level goal in the step case is to reduce the diffeze
between induction conclusion and induction hypothesisden
to enable a final fertilization. These differences are repneed
by annotations, e.g., colours, to the induction conclusfoa
ioms and definitions that belong to the initial state and Wwhic
can be used to reduce the differences are annotated similarl
The abstract search heuristic for proofs by mathematiciidn
tion, rippling, was introduced by Bundy [2] and Hutter [12]. o
It describes a systematic way to remove the differences, for
example by moving the differences outward until the induc- ¢
tion hypothesis can be applied to an inner part of the reswritt
induction conclusion. For example, in proving the conjeetu

@)

The fact that proof plans are afbstractandstructuredrepresenta-
tion of proofs makes proof planning and, in particular, grptans
attractive for other activities in theorem proving:

¢ The abstract and structured representation is well-stitetheo-
rem proving by analogy, as shownin [17]. The structure ofaopr
plan can be exploited when analogically transferring mesand
subplans. As opposedto analogy at an abstract level, thegicel
transfer often fails if drawn at the low level of logical iméce
rules.

For derivational analogy [5, 24, 17], proof plans that stwwatrol
information are needed.

Proof plans that store control information are also weitesiifor
the explanation of proofs and for user interaction as, pusued
in Barnacle [16], an interactive version @AM . There, explana-
tions are extracted from the preconditiong6fAM's methods.

Vo, y,z. o+ (y+2)=(z+y)+2 ¢ As demonstrated in [15], a structured presentation of affirae

4 Mathematical induction is a generalization of the well kmopattern

of Peano induction over natural numbers that has the indlugchema
P(0),Vk(P(k) = P(k+1))

proved very important for the human understanding of preois
is, therefore, needed for proof presentation and interattieorem
proving.

vn(P(n)) '

3 Properties of Proof Planning

Proof planning is a specific plan formation in the “precoiuait

achievement” sense of Al-planning, and as an experimenathe
thor has implemented a simple theorem proving domain inigyod

Specific characteristics of this “domain” are:

The objects are (mathematical) objects such as numbéss,dis
trees and actions are manipulations of formulas descritlijects
and their relations and functions.

to find even more flexible patterns in order to structure a pasdhe
experience with proofs by mathematical induction shows! I# M,
an iteration over several submethods can provide a flexiateem
represented by a supermethod. This idea might help in pigrioi
obtain plan patterns/macros that can be expanded flexibly.

Some clever hierarchical planning is needed in proof plagito far,
two different techniques for hierarchical planning are dusé/AM
realizes hierarchical planning by flexibly expanding (slpethods
to a sequence of (sub)methods from a subset of methods. Tinatou

Formal mathematical proofs which theorem proving aims mt, a Of & super-method is determined by applying the submethods.
often long and very complex and even proof plans can be very.de Omega hlerarchlc_al p_Iannmg is realized by explicitly magkless
Therefore the need to represent bigger chunks by a planming o 'elevant proof obligations (subgoals) that can be plannedhfthe

erator and to understand a proof plan as an abstract repatisan
of a proof.

Goal interaction which is a major issue for plan formation in

general and led to the development of partial order planffitg
20]. In proof planning there is no goal interaction in thegoral
object-level sense because the application of a sequelagcdl
inference rules does not destroy object-level precomnutio

The acquisition of methods and of control knowledge for reath

matical domains is difficult. It took, for instance, quitens®time

to polishC'IAM's methods that at first simulated procedures from

the Ngthm theorem prover. No@ 7AM gets a long way with few
methods for planning inductive proofs. We expect the adtipis

of control knowledge and methods to be a major research@mobl

for mathematical domains.

In proof planning, the knowledge about the mathematicaldvor

is complete and certain rather than incomplete and unoeatain
many real world applications of planning.

4 Lessonsfrom Planning and Proof Planning

As Weld [25] summarizes, in planning, knowledge-baseddesia
a miniature production system turned out to be a good ideaalys
these rules refer to local decisions. They can, however, @tpress
control knowledge referring to the global development oflanp
First, in SOAR [14] such a control was explored and in the Rypd
system [18] the ideas were refined. Such a control is alsaithesdn
[1]. Meta-level control-rules can be found in Press [4]. dAgy the
control-rules contain meta-predicates that refer to theeou state,
the sequence of operators, etc. The experiences with asteedy
of control-rules in Prodigy are summarized in [23]: The autegye of
the factual-control knowledge distinction are modulansification
of the control knowledge, selectivity in building learningodules,
and compositionality of the acquired control knowledgeSIBAR
and Prodigy matching algorithms and data structures hasa te-
veloped to cope efficiently with many control-rules (seé.[These
experiences can help to design proof planning systems thia¢ unse
of the advantages mentioned.

Currently, the most interesting feature of proof plannihgttcould
fertilize planning seems to be that abstract goals are pdisyheuris-
tics expressed in a meta-language. In particular, the atistontrol
knowledge might be of interest for planning in real enviramnts.
The design of meta-predicates that capture proof-relesbstrac-
tions, e.g., those involved in rippling, gives an additibmeans of
control and thus, adds to the power of the proof planner. gtiner
proof planning becomes more than pure precondition achieve.
Macro-operators as investigated in [13] are a first step tdsvalan
patterns and therefore of interest for proof planning. Té@yespond
to fixed patterns of (sub)plans. For proof planning, howevemeed

next lower hierarchical level. This will be amended by mietzel
criteria for distingishing the hierarchy levels.

REFERENCES

[1] A. Barrett, K. Golden, J.S. Penberthy, and D. Well§POP User's
Manual, Version 2.0Dept.of Computer Science and Engineering, Uni-
versity of Washington, 1993. Technical Report 93-09-06.

[2] A.Bundy, ‘The use of explicit plans to guide inductivepfs', inProc.
9th International Conference on Automated Deduction (CARHES.,
E. Lusk and R. Overbeek, volume 310lacture Notes in Computer
Sciencepp. 111-120, Argonne, (1988). Springer.

[3] A. Bundy, ‘Proof planning', irProceedings of the International Con-
ference on Planning 1996 (AIPS-98996).

[4] A.Bundy and B. Welham, "Using meta-level inference felestive ap-
plication of multiple rewrite rules in algebraic manipudat', Artificial
Intelligence 16(2), 189-212,(1981). Also available from Edinburgh as
DAI Research Paper 121.

[5] J.G. Carbonell, ‘Derivational analogy: A theory of restructive prob-
lem solving and expertise acquisition' ,Machine Learning: An Arti-
ficial Intelligence Approacheds., R.S. Michalsky, J.G. Carbonell, and
T.M. Mitchell, 371-392, Morgan Kaufmann Publ., Los Alto$986).

[6] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleavetg J.F. Cre-
mer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. MendleiP&na-
gaden, J.T. Sasaki, and S.F. Smithplementing Mathematics with the
Nuprl Proof Development SysteRrentice Hall, Englewood Cliffs, New
Jersey, 1986.

[7] R.B. DoorenbosProduction Matching for Large Learning Systems
Ph.D. dissertation, Computer Science Department, Cazniglgillon
University, January 1995.

[8] M. Drummond, "On precondition achievement and the cotatnal
economics of automatic planning', @urrent Trends in Al Planning
6-13, I0S Press, (1994).

[9] G. Faltings and U. Deker, “Interview: Die Neugier, etwgmz genau
wissen zu wollen'bild der wissenschaft10), 169-182, (1983).

[10] M. Gordon, R. Milner, and C.P. Wadswortkdinburgh LCF: A Mech-
anized Logic of Computatighecture Notes in Computer Science 78,
Springer, Berlin, 1979.

[11] X.Huang, M. Kerber, M. Kohlhase, E. Melis, D. NesmithRichts, and
J. Siekmann, *Omega-MKRP: A Proof Development Environfmémt
Proc. 12th International Conference on Automated Dedundi@ADE)
Nancy, (1994).

[12] D. Hutter, "Guiding inductive proofs', iRroc. of 10th International
Conference on Automated Deduction (CADdg)., M.E. Stickel, volume
Lecture Notes in Artificial Intelligence 449. Springer, @03).

[13] R.E. Korf, "Macro-operators: A weak method for leamlipArtificial
Intelligence 26, 35-77, (1985).

[14] J Laird, A. Newell, and P. Rosenbloom, "'SOAR:an ardtites for
general intelligence’Artificial Intelligence 33(1), 1-64, (1987).

[15] U. Leron, ‘Structuring mathematical proof$he American Mathemat-
ical Monthly, 90, 174-185, (1983).

[16] H.Lowe, A. Bundy, and D. McLean, ‘The use of proof plammfor co-
operative theorem proving', Research Paper 745, (199%m#ed to

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

the special issue of the Journal of Symbolic Computationraplgjcal
user interfaces and protocols.

E. Melis, ‘A model of analogy-driven proof-plan consttion', inPro-
ceedings of the 14th International Joint Conference orfigidil Intel-
ligence pp. 182—-189, Montreal, (1995).

S. Minton, C. Knoblock, D. Koukka, Y. Gil, R. Joseph, ah€arbonell,
PRODIGY 2.0: The Manual and Tutorjgchool of Computer Science,
Carnegie Mellon University, Pittsburgh, 1989. CMU-CS-B%6.

G. Polya,How to Solve it2nd ed. Doubleday, New York, 1957.

E.D. Sacerdoti, ‘"The nonlinear nature of plans'Pioceedings of the
Fourth International Joint Conference on Artificial Intiglence (IJCAI-
75), pp. 206-214, (1975).

A. Tate, "Generating project networks', Rroceedings of the Fifth
International Joint Conference on Atrtificial Intelligengsp. 888—893.
Morgan Kaufmann, (1977).

F. van Harmelen, A. Ireland, S.Negrete, A. Stevens Arimaill, "The
CLAM proof planner, user manual and programmers manuatheal
Report version 2.0, University of Edinburgh, Edinburg9$3).
Manuela Veloso, Jaime Carbonell, M. Alicia Pérez, RaBorrajo,
Eugene Fink, and Jim Blythe, “Integrating planning andrieay: The
PRODIGY architecture'Journal of Experimental and Theoretical Ar-
tificial Intelligence 81-120, (1995).

M.M. \eloso, Planning and Learning by Analogical Reasoning
Springer, Berlin, New York, 1994.

D.S. Weld, "An introduction to least commitment plamgi, Al maga-
zing 15(4), 27-61, (1994).

