59 research outputs found

    Asymptotically Unambitious Artificial General Intelligence

    Full text link
    General intelligence, the ability to solve arbitrary solvable problems, is supposed by many to be artificially constructible. Narrow intelligence, the ability to solve a given particularly difficult problem, has seen impressive recent development. Notable examples include self-driving cars, Go engines, image classifiers, and translators. Artificial General Intelligence (AGI) presents dangers that narrow intelligence does not: if something smarter than us across every domain were indifferent to our concerns, it would be an existential threat to humanity, just as we threaten many species despite no ill will. Even the theory of how to maintain the alignment of an AGI's goals with our own has proven highly elusive. We present the first algorithm we are aware of for asymptotically unambitious AGI, where "unambitiousness" includes not seeking arbitrary power. Thus, we identify an exception to the Instrumental Convergence Thesis, which is roughly that by default, an AGI would seek power, including over us.Comment: 9 pages with 5 figures; 10 page Appendix with 2 figure

    Multiparty Dynamics and Failure Modes for Machine Learning and Artificial Intelligence

    Full text link
    An important challenge for safety in machine learning and artificial intelligence systems is a~set of related failures involving specification gaming, reward hacking, fragility to distributional shifts, and Goodhart's or Campbell's law. This paper presents additional failure modes for interactions within multi-agent systems that are closely related. These multi-agent failure modes are more complex, more problematic, and less well understood than the single-agent case, and are also already occurring, largely unnoticed. After motivating the discussion with examples from poker-playing artificial intelligence (AI), the paper explains why these failure modes are in some senses unavoidable. Following this, the paper categorizes failure modes, provides definitions, and cites examples for each of the modes: accidental steering, coordination failures, adversarial misalignment, input spoofing and filtering, and goal co-option or direct hacking. The paper then discusses how extant literature on multi-agent AI fails to address these failure modes, and identifies work which may be useful for the mitigation of these failure modes.Comment: 12 Pages, This version re-submitted to Big Data and Cognitive Computing, Special Issue "Artificial Superintelligence: Coordination & Strategy

    Chess as a Testing Grounds for the Oracle Approach to AI Safety

    Get PDF
    To reduce the danger of powerful super-intelligent AIs, we might make the first such AIs oracles that can only send and receive messages. This paper proposes a possibly practical means of using machine learning to create two classes of narrow AI oracles that would provide chess advice: those aligned with the player's interest, and those that want the player to lose and give deceptively bad advice. The player would be uncertain which type of oracle it was interacting with. As the oracles would be vastly more intelligent than the player in the domain of chess, experience with these oracles might help us prepare for future artificial general intelligence oracles

    Safeguarding the safeguards: How best to promote AI alignment in the public interest

    Full text link
    AI alignment work is important from both a commercial and a safety lens. With this paper, we aim to help actors who support alignment efforts to make these efforts as effective as possible, and to avoid potential adverse effects. We begin by suggesting that institutions that are trying to act in the public interest (such as governments) should aim to support specifically alignment work that reduces accident or misuse risks. We then describe four problems which might cause alignment efforts to be counterproductive, increasing large-scale AI risks. We suggest mitigations for each problem. Finally, we make a broader recommendation that institutions trying to act in the public interest should think systematically about how to make their alignment efforts as effective, and as likely to be beneficial, as possible.Comment: Update Dec-15: Added a missing acknowledgement and fixed minor formatting error

    Evaluating Superhuman Models with Consistency Checks

    Full text link
    If machine learning models were to achieve superhuman abilities at various reasoning or decision-making tasks, how would we go about evaluating such models, given that humans would necessarily be poor proxies for ground truth? In this paper, we propose a framework for evaluating superhuman models via consistency checks. Our premise is that while the correctness of superhuman decisions may be impossible to evaluate, we can still surface mistakes if the model's decisions fail to satisfy certain logical, human-interpretable rules. We instantiate our framework on three tasks where correctness of decisions is hard to evaluate due to either superhuman model abilities, or to otherwise missing ground truth: evaluating chess positions, forecasting future events, and making legal judgments. We show that regardless of a model's (possibly superhuman) performance on these tasks, we can discover logical inconsistencies in decision making. For example: a chess engine assigning opposing valuations to semantically identical boards; GPT-4 forecasting that sports records will evolve non-monotonically over time; or an AI judge assigning bail to a defendant only after we add a felony to their criminal record.Comment: 31 pages, 15 figures. Under review. Code and data are available at https://github.com/ethz-spylab/superhuman-ai-consistenc
    • …
    corecore