340 research outputs found

    A Combinatorial Bit Bang Leading to Quaternions

    Get PDF
    This paper describes in detail how (discrete) quaternions - ie. the abstract structure of 3-D space - emerge from, first, the Void, and thence from primitive combinatorial structures, using only the exclusion and co-occurrence of otherwise unspecified events. We show how this computational view supplements and provides an interpretation for the mathematical structures, and derive quark structure. The build-up is emergently hierarchical, compatible with both quantum mechanics and relativity, and can be extended upwards to the macroscopic. The mathematics is that of Clifford algebras emplaced in the homology-cohomology structure pioneered by Kron. Interestingly, the ideas presented here were originally developed by the author to resolve fundamental limitations of existing AI paradigms. As such, the approach can be used for learning, planning, vision, NLP, pattern recognition; and as well, for modelling, simulation, and implementation of complex systems, eg. biological.Comment: 23 pages, 4 figure

    CLIPS on the NeXT computer

    Get PDF
    This paper discusses the integration of CLIPS into a hybrid expert system neural network AI tool for the NeXT computer. The main discussion is devoted to the joining of these two AI paradigms in a mutually beneficial relationship. We conclude that expert systems and neural networks should not be considered as competing AI implementation methods, but rather as complimentary components of a whole

    In search of meta-knowledge

    Get PDF
    Development of an Intelligent Information System (IIS) involves application of numerous artificial intelligence (AI) paradigms and advanced technologies. The National Aeronautics and Space Administration (NASA) is interested in an IIS that can automatically collect, classify, store and retrieve data, as well as develop, manipulate and restructure knowledge regarding the data and its application (Campbell et al., 1987, p.3). This interest stems in part from a NASA initiative in support of the interagency Global Change Research program. NASA's space data problems are so large and varied that scientific researchers will find it almost impossible to access the most suitable information from a software system if meta-information (metadata and meta-knowledge) is not embedded in that system. Even if more, faster, larger hardware is used, new innovative software systems will be required to organize, link, maintain, and properly archive the Earth Observing System (EOS) data that is to be stored and distributed by the EOS Data and Information System (EOSDIS) (Dozier, 1990). Although efforts are being made to specify the metadata that will be used in EOSDIS, meta-knowledge specification issues are not clear. With the expectation that EOSDIS might evolve into an IIS, this paper presents certain ideas on the concept of meta-knowledge and demonstrates how meta-knowledge might be represented in a pixel classification problem

    On the Challenges and Opportunities in Generative AI

    Full text link
    The field of deep generative modeling has grown rapidly and consistently over the years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains. In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with valuable insights for exploring fruitful research directions, thereby fostering the development of more robust and accessible generative AI solutions

    Suffering Toasters -- A New Self-Awareness Test for AI

    Full text link
    A widely accepted definition of intelligence in the context of Artificial Intelligence (AI) still eludes us. Due to our exceedingly rapid development of AI paradigms, architectures, and tools, the prospect of naturally arising AI consciousness seems more likely than ever. In this paper, we claim that all current intelligence tests are insufficient to point to the existence or lack of intelligence \textbf{as humans intuitively perceive it}. We draw from ideas in the philosophy of science, psychology, and other areas of research to provide a clearer definition of the problems of artificial intelligence, self-awareness, and agency. We furthermore propose a new heuristic approach to test for artificial self-awareness and outline a possible implementation. Finally, we discuss some of the questions that arise from this new heuristic, be they philosophical or implementation-oriented.Comment: 4 double-column pages, 2 figure

    Reclaiming Our Identities

    Get PDF

    Representations, symbols and embodiment

    Get PDF
    Response to "Embodied artificial intelligence", a commentary by Ron Chrisley

    Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic AI

    Full text link
    The remarkable advancements in artificial intelligence (AI), primarily driven by deep neural networks, have significantly impacted various aspects of our lives. However, the current challenges surrounding unsustainable computational trajectories, limited robustness, and a lack of explainability call for the development of next-generation AI systems. Neuro-symbolic AI (NSAI) emerges as a promising paradigm, fusing neural, symbolic, and probabilistic approaches to enhance interpretability, robustness, and trustworthiness while facilitating learning from much less data. Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities. In this paper, we provide a systematic review of recent progress in NSAI and analyze the performance characteristics and computational operators of NSAI models. Furthermore, we discuss the challenges and potential future directions of NSAI from both system and architectural perspectives.Comment: Workshop on Systems for Next-Gen AI Paradigms, 6th Conference on Machine Learning and Systems (MLSys), June 4-8, 2023, Miami, FL, US

    INQUIRIES IN INTELLIGENT INFORMATION SYSTEMS: NEW TRAJECTORIES AND PARADIGMS

    Get PDF
    Rapid Digital transformation drives organizations to continually revitalize their business models so organizations can excel in such aggressive global competition. Intelligent Information Systems (IIS) have enabled organizations to achieve many strategic and market leverages. Despite the increasing intelligence competencies offered by IIS, they are still limited in many cognitive functions. Elevating the cognitive competencies offered by IIS would impact the organizational strategic positions. With the advent of Deep Learning (DL), IoT, and Edge Computing, IISs has witnessed a leap in their intelligence competencies. DL has been applied to many business areas and many industries such as real estate and manufacturing. Moreover, despite the complexity of DL models, many research dedicated efforts to apply DL to limited computational devices, such as IoTs. Applying deep learning for IoTs will turn everyday devices into intelligent interactive assistants. IISs suffer from many challenges that affect their service quality, process quality, and information quality. These challenges affected, in turn, user acceptance in terms of satisfaction, use, and trust. Moreover, Information Systems (IS) has conducted very little research on IIS development and the foreseeable contribution for the new paradigms to address IIS challenges. Therefore, this research aims to investigate how the employment of new AI paradigms would enhance the overall quality and consequently user acceptance of IIS. This research employs different AI paradigms to develop two different IIS. The first system uses deep learning, edge computing, and IoT to develop scene-aware ridesharing mentoring. The first developed system enhances the efficiency, privacy, and responsiveness of current ridesharing monitoring solutions. The second system aims to enhance the real estate searching process by formulating the search problem as a Multi-criteria decision. The system also allows users to filter properties based on their degree of damage, where a deep learning network allocates damages in 12 each real estate image. The system enhances real-estate website service quality by enhancing flexibility, relevancy, and efficiency. The research contributes to the Information Systems research by developing two Design Science artifacts. Both artifacts are adding to the IS knowledge base in terms of integrating different components, measurements, and techniques coherently and logically to effectively address important issues in IIS. The research also adds to the IS environment by addressing important business requirements that current methodologies and paradigms are not fulfilled. The research also highlights that most IIS overlook important design guidelines due to the lack of relevant evaluation metrics for different business problems
    corecore