637,345 research outputs found
Developing Artificial Intelligence Agents for a Turn-Based Imperfect Information Game
Artificial intelligence (AI) is often employed to play games, whether to entertain human opponents, devise and test strategies, or obtain other analytical data. Games with hidden information require specific approaches by the player. As a result, the AI must be equipped with methods of operating without certain important pieces of information while being aware of the resulting potential dangers. The computer game GNaT was designed as a testbed for AI strategies dealing specifically with imperfect information. Its development and functionality are described, and the results of testing several strategies through AI agents are discussed
Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games
Many artificial intelligence (AI) applications often require multiple
intelligent agents to work in a collaborative effort. Efficient learning for
intra-agent communication and coordination is an indispensable step towards
general AI. In this paper, we take StarCraft combat game as a case study, where
the task is to coordinate multiple agents as a team to defeat their enemies. To
maintain a scalable yet effective communication protocol, we introduce a
Multiagent Bidirectionally-Coordinated Network (BiCNet ['bIknet]) with a
vectorised extension of actor-critic formulation. We show that BiCNet can
handle different types of combats with arbitrary numbers of AI agents for both
sides. Our analysis demonstrates that without any supervisions such as human
demonstrations or labelled data, BiCNet could learn various types of advanced
coordination strategies that have been commonly used by experienced game
players. In our experiments, we evaluate our approach against multiple
baselines under different scenarios; it shows state-of-the-art performance, and
possesses potential values for large-scale real-world applications.Comment: 10 pages, 10 figures. Previously as title: "Multiagent
Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat
Games", Mar 201
Scheduling Activity in an Agent Architecture
Proceedings of the AISB’00 Symposium on AI Planning and Intelligent Agents. Birmingham, UK, 17-20 April, 2000.Agents for applications in dynamic environments require artificial intelligence techniques to solve problems to achieve their objectives. For example, they must develop plans of actions to carry out missions in their environment, in other words, to achieve some state in the world. But also, the agents must fulfill real-time requirements that arise because the characteristics of the applications and the dynamism of the environment. In this paper we analyze the use of a schedule of activity in an agent architecture to control the resources (time) needed by agents to accomplish their objectives.Publicad
- …
