2,681 research outputs found

    Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

    Full text link
    NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.Comment: Accepted at EMNLP 2017. Please include EMNLP in any citations. Minor changes from the EMNLP camera-ready version. 9 pages + references and supplementary materia

    Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    Get PDF
    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered

    Task-specific Word Identification from Short Texts Using a Convolutional Neural Network

    Full text link
    Task-specific word identification aims to choose the task-related words that best describe a short text. Existing approaches require well-defined seed words or lexical dictionaries (e.g., WordNet), which are often unavailable for many applications such as social discrimination detection and fake review detection. However, we often have a set of labeled short texts where each short text has a task-related class label, e.g., discriminatory or non-discriminatory, specified by users or learned by classification algorithms. In this paper, we focus on identifying task-specific words and phrases from short texts by exploiting their class labels rather than using seed words or lexical dictionaries. We consider the task-specific word and phrase identification as feature learning. We train a convolutional neural network over a set of labeled texts and use score vectors to localize the task-specific words and phrases. Experimental results on sentiment word identification show that our approach significantly outperforms existing methods. We further conduct two case studies to show the effectiveness of our approach. One case study on a crawled tweets dataset demonstrates that our approach can successfully capture the discrimination-related words/phrases. The other case study on fake review detection shows that our approach can identify the fake-review words/phrases.Comment: accepted by Intelligent Data Analysis, an International Journa

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi
    • …
    corecore