502 research outputs found

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    Adaptive Boolean Monotonicity Testing in Total Influence Time

    Get PDF
    Testing monotonicity of a Boolean function f:{0,1}^n -> {0,1} is an important problem in the field of property testing. It has led to connections with many interesting combinatorial questions on the directed hypercube: routing, random walks, and new isoperimetric theorems. Denoting the proximity parameter by epsilon, the best tester is the non-adaptive O~(epsilon^{-2}sqrt{n}) tester of Khot-Minzer-Safra (FOCS 2015). A series of recent results by Belovs-Blais (STOC 2016) and Chen-Waingarten-Xie (STOC 2017) have led to Omega~(n^{1/3}) lower bounds for adaptive testers. Reducing this gap is a significant question, that touches on the role of adaptivity in monotonicity testing of Boolean functions. We approach this question from the perspective of parametrized property testing, a concept recently introduced by Pallavoor-Raskhodnikova-Varma (ACM TOCT 2017), where one seeks to understand performance of testers with respect to parameters other than just the size. Our result is an adaptive monotonicity tester with one-sided error whose query complexity is O(epsilon^{-2}I(f)log^5 n), where I(f) is the total influence of the function. Therefore, adaptivity provably helps monotonicity testing for low influence functions

    Learning to Navigate the Energy Landscape

    Full text link
    In this paper, we present a novel and efficient architecture for addressing computer vision problems that use `Analysis by Synthesis'. Analysis by synthesis involves the minimization of the reconstruction error which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy of our approach on the challenging problem of RGB Camera Relocalization. To make the RGB camera relocalization problem particularly challenging, we introduce a new dataset of 3D environments which are significantly larger than those found in other publicly-available datasets. Our experiments reveal that the proposed method is able to achieve state-of-the-art camera relocalization results. We also demonstrate the generalizability of our approach on Hand Pose Estimation and Image Retrieval tasks

    The Point-to-Set Principle, the Continuum Hypothesis, and the Dimensions of Hamel Bases

    Full text link
    We prove that the Continuum Hypothesis implies that every real number in (0,1] is the Hausdorff dimension of a Hamel basis of the vector space of reals over the field of rationals. The logic of our proof is of particular interest. The statement of our theorem is classical; it does not involve the theory of computing. However, our proof makes essential use of algorithmic fractal dimension--a computability-theoretic construct--and the point-to-set principle of J. Lutz and N. Lutz (2018)

    When Hashes Met Wedges: A Distributed Algorithm for Finding High Similarity Vectors

    Full text link
    Finding similar user pairs is a fundamental task in social networks, with numerous applications in ranking and personalization tasks such as link prediction and tie strength detection. A common manifestation of user similarity is based upon network structure: each user is represented by a vector that represents the user's network connections, where pairwise cosine similarity among these vectors defines user similarity. The predominant task for user similarity applications is to discover all similar pairs that have a pairwise cosine similarity value larger than a given threshold τ\tau. In contrast to previous work where τ\tau is assumed to be quite close to 1, we focus on recommendation applications where τ\tau is small, but still meaningful. The all pairs cosine similarity problem is computationally challenging on networks with billions of edges, and especially so for settings with small τ\tau. To the best of our knowledge, there is no practical solution for computing all user pairs with, say τ=0.2\tau = 0.2 on large social networks, even using the power of distributed algorithms. Our work directly addresses this challenge by introducing a new algorithm --- WHIMP --- that solves this problem efficiently in the MapReduce model. The key insight in WHIMP is to combine the "wedge-sampling" approach of Cohen-Lewis for approximate matrix multiplication with the SimHash random projection techniques of Charikar. We provide a theoretical analysis of WHIMP, proving that it has near optimal communication costs while maintaining computation cost comparable with the state of the art. We also empirically demonstrate WHIMP's scalability by computing all highly similar pairs on four massive data sets, and show that it accurately finds high similarity pairs. In particular, we note that WHIMP successfully processes the entire Twitter network, which has tens of billions of edges
    corecore