56,705 research outputs found
Hydrogen sulphide regulates inward-rectifying K+ channels in conjunction with stomatal closure
Hydrogen sulphide (H2S) is the third biological gasotransmitter and, in animals, affects many physiological processes by modulating ion channels. H2S has been reported to protect plants from oxidative stress in diverse physiological responses. H2S closes stomata, but the underlying mechanism remains elusive. Here we report the selective inactivation of current carried by inward-rectifying K+ channels (IKIN) of tobacco guard cells and demonstrate its close parallel with stomatal closure evoked by submicromolar concentrations of H2S. Experiments to scavenge H2S suggested an effect that is separable from that of abscisic acid, which is associated with water stress. Thus, H2S appears to associate with a new and as yet unresolved signalling pathway that selectively targets IKIN
Recommended from our members
MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response.
Abiotic stresses, including drought and salinity, trigger a complex osmotic-stress and abscisic acid (ABA) signal transduction network. The core ABA signalling components are snf1-related protein kinase2s (SnRK2s), which are activated by ABA-triggered inhibition of type-2C protein-phosphatases (PP2Cs). SnRK2 kinases are also activated by a rapid, largely unknown, ABA-independent osmotic-stress signalling pathway. Here, through a combination of a redundancy-circumventing genetic screen and biochemical analyses, we have identified functionally-redundant MAPKK-kinases (M3Ks) that are necessary for activation of SnRK2 kinases. These M3Ks phosphorylate a specific SnRK2/OST1 site, which is indispensable for ABA-induced reactivation of PP2C-dephosphorylated SnRK2 kinases. ABA-triggered SnRK2 activation, transcription factor phosphorylation and SLAC1 activation require these M3Ks in vitro and in plants. M3K triple knock-out plants show reduced ABA sensitivity and strongly impaired rapid osmotic-stress-induced SnRK2 activation. These findings demonstrate that this M3K clade is required for ABA- and osmotic-stress-activation of SnRK2 kinases, enabling robust ABA and osmotic stress signal transduction
Does abscisic acid affect strigolactone biosynthesis?
Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA).
Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied.
* •
The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants.
* •
The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis
Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA
Genotypic variation of dormancy in wheat (Triticum aestivum L.) : a thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science, Department of Plant Science, Massey University, Palmerston North, New Zealand
Embryo dormancy and α - amylase dormancy are desirable in wheat to minimise pre-harvest sprouting damage. The current work focuses on the embryo and graincoat colour. A loose association between grain redness and dormancy in wheat is common knowledge. But the causal relationships between colour and dormancy are not clear and need to account for dormancy variability in the gene - pool. The study's working hypothesis was that colour formation triggers hypo - oxia synthesis of ABA (vs. gibberellins) which triggers dormancy if the timing with embryo development is optimal. Development profiles for eight attributes (including dormancy) of grain were investigated from five white and five red wheat cultivars representing a wide genetic base. Tagged ears were sampled from pollination to harvest ripeness (days after pollination to 12.5% moisture). All the white - grained cultivars did not have dormancy at harvest ripeness, and there was considerable variation of dormancy levels in the red - grained cultivars. The total-grain abscisic acid was not associated with redness nor dormancy, and no evidence of ABA sensitivity could be found in cv. Brevor. The failure to detect the putative dormancy of cvs. Brevor and Kenya 321 was probably due to fine detail employed in the present work, but may also have been due to the single ripening environment used. Base α amylase and flavanol levels did not contribute to the variation in embryo dormancy. Gibberellic acid insensitivity in the Rht/Gai genotypes was not expressed in terms of embryo dormancy. Examination of the profiles suggested that redness was necessary to permit dormancy, but that dormancy timing was independent of colour. This led to varying levels of dormancy at harvest ripeness. No association with ABA was evident, nor with colour precursor. However timing and duration of polymerisation (flavanol) development (hypo-oxia) did show a weak association with dormancy delay and level. The new hypothesis suggests that colour formation hypo-oxia permits dormancy, but that its timing is flexible with respect to harvest ripeness. Broader genetic control (other than the Redness gene) is indicated. Heritability estimates indicated that timings, rather than levels, are more useful selection criteria. This included embryo dormancy attributes, colour, and harvest ripeness. For plant breeders it suggested that grain sampled at harvest ripeness could be selected for dormancy as measured in this study
Recommended from our members
Ethylene Response of Plum ACC Synthase 1 (ACS1) Promoter is Mediated through the Binding Site of Abscisic Acid Insensitive 5 (ABI5).
The enzyme 1-amino-cyclopropane-1-carboxylic acid synthase (ACS) participates in the ethylene biosynthesis pathways and it is tightly regulated transcriptionally and post-translationally. Notwithstanding its major role in climacteric fruit ripening, the transcriptional regulation of ACS during ripening is not fully understood. We studied fruit ripening in two Japanese plum cultivars, the climacteric Santa Rosa (SR) and its non-climacteric bud sport mutant, Sweet Miriam (SM). As the two cultivars show considerable difference in ACS expression, they provide a good system for the study of the transcriptional regulation of the gene. To investigate the differential transcriptional regulation of ACS1 genes in the SR and SM, their promoter region, which showed only minor sequence differences, was isolated and used to identify the binding of transcription factors interacting with specific ACS1 cis-acting elements. Three transcription factors (TFs), abscisic acid-insensitive 5 (ABI5), GLABRA 2 (GL2), and TCP2, showed specific binding to the ACS1 promoter. Synthetic DNA fragments containing multiple cis-acting elements of these TFs fused to β-glucuronidase (GUS), showed the ABI5 binding site mediated ethylene and abscisic acid (ABA) responses of the promoter. While TCP2 and GL2 showed constant and similar expression levels in SM and SR fruit during ripening, ABI5 expression in SM fruits was lower than in SR fruits during advanced fruit ripening states. Overall, the work demonstrates the complex transcriptional regulation of ACS1
ABI4 Mediates Antagonistic Effects of Abscisic Acid and Gibberellins at Transcript and Protein Levels
Abscisic acid (ABA) and gibberellins (GA) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA- INSENSITIVE 4 (ABI4) is a central factor for GA/ABA homeostasis and antagonism in post-germination stages. ABI4 over-expression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 over-expression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio compared to the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein, whereas GA promotes its degradation. Taken together, these results propose that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels
Interplay between carotenoids, abscisic acid and jasmonate guides the compatible rice-Meloidogyne graminicola interaction
In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN) Meloidogyne graminicola and the monocot model plant rice (Oryza sativa). Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA). When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA) levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected
A role for jasmonates in the release of dormancy by cold stratification in wheat
Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.This project was funded by a CSIRO Office of the Chief Executive PDF
scheme
Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi
- …
