174,494 research outputs found

    A dimension-breaking phenomenon for water waves with weak surface tension

    Full text link
    It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schr\"odinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-015-0941-

    Complete loop quantization of a dimension 1+2 Lorentzian gravity theory

    Full text link
    De Sitter Chern-Simons gravity in D = 1 + 2 spacetime is known to possess an extension with a Barbero-Immirzi like parameter. We find a partial gauge fixing which leaves a compact residual gauge group, namely SU(2). The compacticity of the residual gauge group opens the way to the usual LQG quantization techniques. We recall the exemple of the LQG quantization of SU(2) CS theory with cylindrical space topology, which thus provides a complete LQG of a Lorentzian gravity model in 3-dimensional space-time.Comment: Loops11 - Madrid - 2011 (4 pages, Latex

    A Dimension Reduction Scheme for the Computation of Optimal Unions of Subspaces

    Get PDF
    Given a set of points \F in a high dimensional space, the problem of finding a union of subspaces \cup_i V_i\subset \R^N that best explains the data \F increases dramatically with the dimension of \R^N. In this article, we study a class of transformations that map the problem into another one in lower dimension. We use the best model in the low dimensional space to approximate the best solution in the original high dimensional space. We then estimate the error produced between this solution and the optimal solution in the high dimensional space.Comment: 15 pages. Some corrections were added, in particular the title was changed. It will appear in "Sampling Theory in Signal and Image Processing

    On a Dimension Formula for Twisted Spherical Conjugacy Classes in Semisimple Algebraic Groups

    Full text link
    Let GG be a connected semisimple algebraic group over an algebraically closed field of characteristic zero, and let th\th be an automorphism of GG. We give a characterization of th\th-twisted spherical conjugacy classes in GG by a formula for their dimensions in terms of certain elements in the Weyl group of GG, generalizing a result of N. Cantarini, G. Carnovale, and M. Costantini when th\th is the identity automorphism. For GG simple and th\th an outer automorphism of GG, we also classify the Weyl group elements that appear in the dimension formula.Comment: 8 page
    corecore