4 research outputs found

    Měření Triple play služeb v hybridní síti

    Get PDF
    The master's thesis deals with a project regarding the implementation, design and the quality of IPTV, VoIP and Data services within the Triple Play services. In heterostructural networks made up of GEPON and xDSL technologies. Different lengths of the optical and metallic paths were used for the measurements. The first part of the thesis is theoretically analyzed the development and trend of optical and metallic networks. The second part deals with the measurement of typical optical and metallic parameters on the constructed experimental network, where its integrity was tested. Another part of the thesis is the evaluation of Triple play results, regarding the test where the network was variously tasked/burdened with data traffic and evaluated according to defined standards. The last part is concerned with the Optiwave Software simulation environment.Diplomová práce se zabývá návrhem, realizací a kvalitou služeb IPTV, VoIP a Data v rámci Triple play služeb v heterostrukturní sítí tvořené GEPON a xDSL technologiemi. Pro měření byli využity různé délky optické a metalické trasy. První části diplomové práce je teoreticky rozebrán vývoj a trend optických a metalických sítí. Druhá část se zaměřuje na měření typických optických a metalických parametrů na vybudované experimentální síti, kde byla následně testována její integrita. Dalším bodem práce je vyhodnocení výsledků Triple play, kde síť je různě zatěžována datovým provozem a následně vyhodnocována podle definovaných norem. Závěr práce je věnovaný simulačnímu prostředí Optiwave.440 - Katedra telekomunikační technikyvýborn

    Estimation and detection of transmission line characteristics in the copper access network

    Get PDF
    The copper access-network operators face the challenge of developing and maintaining cost-effective digital subscriber line (DSL) services that are competitive to other broadband access technologies. The way forward is dictated by the demand of ever increasing data rates on the twisted-pair copper lines. To meet this demand, a relocation of the DSL transceivers in cabinets closer to the customers are often necessary combined with a joint expansion of the accompanying optical-fiber backhaul network. The equipment of the next generation copper network are therefore becoming more scattered and geographically distributed, which increases the requirements of automated line qualification with fault detection and localization. This scenario is addressed in the first five papers of this dissertation where the focus is on estimation and detection of transmission line characteristics in the copper access network. The developed methods apply model-based optimization with an emphasis on using low-order modeling and a priori information of the given problem. More specifically, in Paper I a low-order and causal cable model is derived based on the Hilbert transform. This model is successfully applied in three contributions of this dissertation. In Paper II, a class of low-complexity unbiased estimators for the frequency-dependent characteristic impedance is presented that uses one-port measurements only. The so obtained characteristic impedance paves the way for enhanced time domain reflectometry (a.k.a. TDR) on twisted-pair lines. In Paper III, the problem of estimating a nonhomogeneous and dispersive transmission line is investigated and a space-frequency optimization approach is developed for the DSL application. The accompanying analysis shows which parameters are of interest to estimate and further suggests the introduction of the concept capacitive length that overcomes the necessity of a priori knowledge of the physical line length. In Paper IV, two methods are developed for detection and localization of load coils present in so-called loaded lines. In Paper V, line topology identification is addressed with varying degree of a priori information. In doing so, a model-based optimization approach is employed that utilizes multi-objective evolutionary computation based on one/two-port measurements. A complement to transceiver relocation that potentially enhances the total data throughput in the copper access network is dynamic spectrum management (DSM). This promising multi-user transmission technique aims at maximizing the transmission rates, and/or minimizing the power consumption, by mitigating or cancelling the dominating crosstalk interference between twisted-pair lines in the same cable binder. Hence the spectral utilization is improved by optimizing the transmit signals in order to minimize the crosstalk interference. However, such techniques rely on accurate information of the (usually) unknown crosstalk channels. This issue is the main focus of Paper VI and VII of this dissertation in which Paper VI deals with estimation of the crosstalk channels between twisted-pair lines. More specifically, an unbiased estimator for the square-magnitude of the crosstalk channels is derived from which a practical procedure is developed that can be implemented with standardized DSL modems already installed in the copper access network. In Paper VII the impact such a non-ideal estimator has on the performance of DSM is analyzed and simulated. Finally, in Paper VIII a novel echo cancellation algorithm for DMT-based DSL modems is presented

    FFT and FIR Filter implementations for the DSL MODEMS

    Get PDF
    Broad band digital communication that operates over a standard copper wires. It requires the DSL modems which splits the transmissions into 2 frequency bands. The lower frequencies for voice and the higher frequencies for digital data (internet) in order to transmit the data to larger distances through a copper cable we need modulation techniques. Generally in this DSL modems modulation used is QAM technique. The output of the QAM is complex data this complex data we cannot transfer directly through a copper cable because the data should be in time domain or otherwise the phase of the data which is in frequency domain can be lost, in copper cable so this data should be converted in time domain by using IDFT technique. As IDFT requires more number of complex multiplications and more number of complex additions in comparison to IFFT so to reduce the additions and multiplications IFFT technique is used. At the receiver side we can retrieve the same data by using FFT technique. In this section the implemented FFT architecture is fully efficient and this architecture will require less area. And before we have to transmit through the copper line we have to do interpolation or decimation by using the Filtering operation. The implemented poly phase architecture for the filtering is fully efficient, symmetrical and it requires less number of multipliers

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF
    corecore