42 research outputs found

    Cooperative wideband spectrum sensing with multi-bit hard decision in cognitive radio

    Get PDF
    Cognitive radio offers an increasingly attractive solution to overcome the underutilization problem. A sensor network based cooperative wideband spectrum sensing is proposed in this paper. The purpose of the sensor network is to determine the frequencies of the sources and reduced the total sensing time using a multi-resolution sensing technique. The final result is computed by data fusion of multi-bit decisions made by each cooperating secondary user. Simulation results show improved performance in energy efficiency

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable

    A fully integrated SRAM-based CMOS arbitrary waveform generator for analog signal processing

    Get PDF
    This dissertation focuses on design and implementation of a fully-integrated SRAM-based arbitrary waveform generator for analog signal processing applications in a CMOS technology. The dissertation consists of two parts: Firstly, a fully-integrated arbitrary waveform generator for a multi-resolution spectrum sensing of a cognitive radio applications, and an analog matched-filter for a radar application and secondly, low-power techniques for an arbitrary waveform generator. The fully-integrated low-power AWG is implemented and measured in a 0.18-¥ìm CMOS technology. Theoretical analysis is performed, and the perspective implementation issues are mentioned comparing the measurement results. Moreover, the low-power techniques of SRAM are addressed for the analog signal processing: Self-deactivated data-transition bit scheme, diode-connected low-swing signaling scheme with a short-current reduction buffer, and charge-recycling with a push-pull level converter for power reduction of asynchronous design. Especially, the robust latch-type sense amplifier using an adaptive-latch resistance and fully-gated ground 10T-SRAM bitcell in a 45-nm SOI technology would be used as a technique to overcome the challenges in the upcoming deep-submicron technologies.Ph.D.Committee Chair: Kim, Jongman; Committee Member: Kang, Sung Ha; Committee Member: Lee, Chang-Ho; Committee Member: Mukhopadhyay, Saibal; Committee Member: Tentzeris, Emmanouil

    On Random Sampling for Compliance Monitoring in Opportunistic Spectrum Access Networks

    Get PDF
    In the expanding spectrum marketplace, there has been a long term evolution towards more market€“oriented mechanisms, such as Opportunistic Spectrum Access (OSA), enabled through Cognitive Radio (CR) technology. However, the potential of CR technologies to revolutionize wireless communications, also introduces challenges based upon the potentially non€“deterministic CR behaviour in the Electrospace. While establishing and enforcing compliance to spectrum etiquette rules are essential to realization of successful OSA networks in the future, there has only been recent increased research activity into enforcement. This dissertation presents novel work on the spectrum monitoring aspect, which is crucial to effective enforcement of OSA. An overview of the challenges faced by current compliance monitoring methods is first presented. A framework is then proposed for the use of random spectral sampling techniques to reduce data collection complexity in wideband sensing scenarios. This approach is recommended as an alternative to Compressed Sensing (CS) techniques for wideband spectral occupancy estimation, which may be difficult to utilize in many practical congested scenarios where compliance monitoring is required. Next, a low€“cost computational approach to online randomized temporal sensing deployment is presented for characterization of temporal spectrum occupancy in cognitive radio scenarios. The random sensing approach is demonstrated and its performance is compared to CS€“based approach for occupancy estimation. A novel frame€“based sampling inversion technique is then presented for cases when it is necessary to track the temporal behaviour of individual CRs or CR networks. Parameters from randomly sampled Physical Layer Convergence Protocol (PLCP) data frames are used to reconstruct occupancy statistics, taking account of missed frames due to sampling design, sensor limitations and frame errors. Finally, investigations into the use of distributed and mobile spectrum sensing to collect spatial diversity to improve the above techniques are presented, for several common monitoring tasks in spectrum enforcement. Specifically, focus is upon techniques for achieving consensus in dynamic topologies such as in mobile sensing scenarios

    An Innovative Signal Detection Algorithm in Facilitating the Cognitive Radio Functionality for Wireless Regional Area Network Using Singular Value Decomposition

    Get PDF
    This thesis introduces an innovative signal detector algorithm in facilitating the cognitive radio functionality for the new IEEE 802.22 Wireless Regional Area Networks (WRAN) standard. It is a signal detector based on a Singular Value Decomposition (SVD) technique that utilizes the eigenvalue of a received signal. The research started with a review of the current spectrum sensing methods which the research classifies as the specific, semiblind or blind signal detector. A blind signal detector, which is known as eigenvalue based detection, was found to be the most desired detector for its detection capabilities, time of execution, and zero a-priori knowledge. The detection algorithm was developed analytically by applying the Signal Detection Theory (SDT) and the Random Matrix Theory (RMT). It was then simulated using Matlab® to test its performance and compared with similar eigenvalue based signal detector. There are several techniques in finding eigenvalues. However, this research considered two techniques known as eigenvalue decomposition (EVD) and SVD. The research tested the algorithm with a randomly generated signal, simulated Digital Video Broadcasting-Terrestrial (DVB-T) standard and real captured digital television signals based on the Advanced Television Systems Committee (ATSC) standard. The SVD based signal detector was found to be more efficient in detecting signals without knowing the properties of the transmitted signal. The algorithm is suitable for the blind spectrum sensing where the properties of the signal to be detected are unknown. This is also the advantage of the algorithm since any signal would interfere and subsequently affect the quality of service (QoS) of the IEEE 802.22 connection. Furthermore, the algorithm performed better in the low signal-to-noise ratio (SNR) environment. In order to use the algorithm effectively, users need to balance between detection accuracy and execution time. It was found that a higher number of samples would lead to more accurate detection, but will take longer time. In contrary, fewer numbers of samples used would result in less accuracy, but faster execution time. The contributions of this thesis are expected to assist the IEEE 802.22 Standard Working Group, regulatory bodies, network operators and end-users in bringing broadband access to the rural areas

    A CMOS spectrum analyzer frontend for cognitive radio achieving +25dBm IIP3 and −169 dBm/Hz DANL

    Get PDF
    A dual RF-receiver preceded by discrete-step attenuators is implemented in 65nm CMOS and operates from 0.3– 1.0 GHz. The noise of the receivers is reduced by cross-correlating the two receiver outputs in the digital baseband, allowing attenuation of the RF input signal to increase linearity. With this technique a displayed average noise level below -169 dBm/Hz is obtained with +25 dBm IIP3, giving a spurious-free dynamic range of 89 dB in 1 MHz resolution bandwidth

    Design of Cognitive Radios

    Get PDF
    Cognitive radios are expected to perform spectrum sensing and communication in the frequency range of tens of megahertz to about 10 GHz. As such, they pose tough architecture and circuit design problems. This paper deals with issues such as broadband, low-noise amplification, multidecade carrier frequency synthesis, and spectrum sensing. The paper also describes the effect of nonlinearity and local oscillator harmonics, demonstrating that cognitive radios entail more difficult challenges than do software-defined radios. Multi-decade synthesis techniques and RF-assisted sensing methods are also presented
    corecore