2 research outputs found

    Unequally spaced microstrip linear antenna arrays for fifth-generation base station

    Get PDF
    Wireless technology communication has been continuously evolving towards future fifth generation (5G), whereby multi-beam, multi-frequency, and low sidelobe characteristics are required in the mobile base station. However, the low sidelobe level of conventional mobile base station antenna led to more complex of feeding network design in order to give an adequate excitation coefficients (amplitude and phase) to array elements. Thus, the current base station antennas are difficult for wide frequency use due to frequency range is limited. Subsequently in this research, an unequally spaced microstrip linear antenna arrays is proposed. The radiation pattern synthesis for low sidelobe and grating lobes suppression over wide frequency use are investigated. In the first stage, a single antenna is designed at frequency 28 GHz followed by 16 element linear arrays in order to achieve the gain requirement for mobile base station antenna. Next, the design of antenna arrays with sidelobe reduction is proposed. Three configurations of linear antenna arrays are designed, which are equally spaced array (ESA), unequally spaced array 1 (USA 1) and unequally spaced array 2 (USA 2) at frequency f! = 28 GHz, f1 = 42 GHz and f2 = 56 GHz with a similar array aperture, in order to investigate the antenna performance in wide frequency use characteristics. USA 1 and USA 2 are having different center spacing of array (dc), which are dc(USA1) = 0.6 mm and dc(USA2) = 0.5 mm, respectively. The simulation results are obtained by using High Frequency Structure Simulator (HFSS). The good results were observed, where the performance of sidelobe reduction are constant even though the frequency changes. Due to the lack of measurement facilities at higher frequency than 18 GHz, the antenna arrays are redesigned at lower frequency, which are 12 and 18 GHz. In order to achieve a wide frequency operation, a wide frequency use of ESA?, USA 1? and USA 2? feeding network (which notation ? indicates that the frequency of 12 GHz is chosen as reference) are designed by using Advanced Design System (ADS). An equal line lengths (ln) with equal power ratio dividers were constructed. The sidelobe reduced from -13 dB for ESA? to -19 dB for USA 2?. The measurement of S-parameter and radiation pattern are performed using a vector network analyzer (VNA) and anechoic chamber, respectively. The measured results were presented and a good correlation with simulations was observed. From the observation, the sidelobe level and grating lobe suppression of USA 2? is reduced rather well and recommended for wide frequency band for 5G mobile base station antenna

    Analysis and Design of a Wideband Dual-Polarized Antenna Based on the Principle of Huygens\u27 Source

    Get PDF
    Analysis and designs of wideband dual-polarized antennas for mobile wireless communication systems are presented. The concept for Huygens\u27 sources, which are combinations of electric and magnetic dipoles, is used. As a result a wideband unidirectional antenna, which consists of a planar dipole and a slot, is selected for the antenna element. This study aims at designing a dually polarized antenna with wideband performance. The first part of the study discusses the performance of the linearly polarized antenna element at 2.5 GHz. Several design parameters associated with the antenna element are addressed. To improve the performance and increase the bandwidth, a twin-fed hook-shaped probe feeding technique is applied. Prototype antennas are fabricated and tested, and good agreement between the simulated and measured results is obtained. The second part of this study is extended to design the wideband dual-polarized patch antenna. Problems associated with the practical implementation of the dual-polarized antenna in printed form are discussed. The wideband performance of the present antenna is examined by shielding the dielectric substrate from the radiating region. The proposed antenna is fabricated and tested. In addition, a metallic side wall is adopted for suppressing the back radiation. The study for designing a possible candidate for a novel dual-polarized antenna by embedding an electromagnetic bandgap (EBG) structure is investigated. Analysis for unit-cells of mushroom-like and wideband uniplanar EBG structures is performed, and simple monopoles are used for exciting the EBG embedded antenna. The presented antennas find many possible applications in many recent wireless communication systems like 3G, 3GPP Long Term Evolution (LTE), 4G, Wi-MAX, and Wi-Bro
    corecore