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ABSTRACT

Wireless technology communication has been continuously evolving towards
future fifth generation (5G), whereby multi-beam, multi-frequency, and low sidelobe
characteristics are required in the mobile base station. However, the low sidelobe level
of conventional mobile base station antenna led to more complex of feeding network
design in order to give an adequate excitation coefficients (amplitude and phase) to
array elements. Thus, the current base station antennas are difficult for wide frequency
use due to frequency range is limited. Subsequently in this research, an unequally
spaced microstrip linear antenna arrays is proposed. The radiation pattern synthesis for
low sidelobe and grating lobes suppression over wide frequency use are investigated.
In the first stage, a single antenna is designed at frequency 28 GHz followed by 16
element linear arrays in order to achieve the gain requirement for mobile base station
antenna. Next, the design of antenna arrays with sidelobe reduction is proposed. Three
configurations of linear antenna arrays are designed, which are equally spaced array
(ESA), unequally spaced array 1 (USA 1) and unequally spaced array 2 (USA 2) at
frequency f� = 28 GHz, f1 = 42 GHz and f2 = 56 GHz with a similar array aperture, in
order to investigate the antenna performance in wide frequency use characteristics.
USA 1 and USA 2 are having different center spacing of array (dc), which are
dc(USA1) = 0.6 mm and dc(USA2) = 0.5 mm, respectively. The simulation results are
obtained by using High Frequency Structure Simulator (HFSS). The good results were
observed, where the performance of sidelobe reduction are constant even though the
frequency changes. Due to the lack of measurement facilities at higher frequency than
18 GHz, the antenna arrays are redesigned at lower frequency, which are 12 and 18
GHz. In order to achieve a wide frequency operation, a wide frequency use of ESA⇤,
USA 1⇤ and USA 2⇤ feeding network (which notation ⇤ indicates that the frequency
of 12 GHz is chosen as reference) are designed by using Advanced Design System
(ADS). An equal line lengths (ln) with equal power ratio dividers were constructed.
The sidelobe reduced from -13 dB for ESA⇤ to -19 dB for USA 2⇤. The measurement
of S-parameter and radiation pattern are performed using a vector network analyzer
(VNA) and anechoic chamber, respectively. The measured results were presented and
a good correlation with simulations was observed. From the observation, the sidelobe
level and grating lobe suppression of USA 2⇤ is reduced rather well and recommended
for wide frequency band for 5G mobile base station antenna.
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ABSTRAK 
 

 

Teknologi komunikasi tanpa wayar terus berkembang untuk ke arah generasi kelima 

(5G), di mana pelbagai alur, pelbagai frekuensi dan cuping sisi rendah diperlukan di stesen 

pangkalan mudah alih. Walaubagaimanapun, stesen pangkalan mudah konvensional bercuping 

sisi rendah rangkaian penyuapan menyebabkan rangkaian penyuapan yang lebih komplek untuk 

menghasilkan pengujaan (amplitud dan fasa) yang cukup bagi setiap elemen. Maka, ketika ini, 

antena stesen pangkalan mudah alih adalah sukar untuk mencapai penggunaan julat frekuensi 

yang lebar kerana jalur frekuensi yang terhad. Seterusnya, tatasusunan antena mikrojalur linear 

bersela tidak sama dicadangkan. Sintesis corak radiasi untuk pengurangan cuping sisi dan cuping 

jeriji bagi penggunaan frekuensi yang lebar dikaji. Pada peringkat permulaan, antena tunggal 

pada frekuensi 28 GHz direkabentuk diikuti dengan rekabentuk tatasusunan linear 16 elemen 

bagi mencapai gandaan yang diperlukan oleh antena stesen pangkalan mudah alih. Seterusnya, 

rekabentuk tatasusunan antena dengan pengurangan cuping sisi dicadangkan. Tiga konfigurasi 

tatasusunan antena linear telah direkabentuk, iaitu tatasusunan sama jarak (ESA), tatasusunan 

tidak sama jarak 1 (USA 1) dan tatasusunan tidak sama jarak 2 (USA 2) pada frekuensi 𝑓𝑜 = 28 

GHz, 𝑓1 = 42 GHz dan 𝑓2 = 56 GHz dengan bukaan tatasusunan yang sama untuk kajian ke atas 

prestasi antena dalam ciri frekuensi lebar. USA 1 dan USA 2 mempunyai jarak antara elemen di 

tengah tatasusunan yang tidak sama, di mana 𝑑𝑐(𝑈𝑆𝐴 1) = 0.6 𝑚𝑚 dan 𝑑𝑐(𝑈𝑆𝐴 2) = 0.5 𝑚𝑚. 

Simulasi dilakukan menggunakan High Frequency Structure Simulator (HFSS). Hasil keputusan 

yang baik diperolehi, iaitu tahap pengurangan cuping sisi adalah tetap walaupun frekuensi 

berubah. Disebabkan oleh kekurangan fasiliti pengukuran pada frekuensi tinggi melebihi 18 

GHz, tatasusunan antena telah direkabentuk semula pada frekuensi 12 dan 18 GHz. Untuk 

mencapai operasi frekuensi yang lebar, rangkaian penyuapan antena berfrekuensi yang lebar 

untuk ESA*, USA* dan USA 2* (di mana tanda * menunjukkan frekuensi 12 GHz dipilih sebagai 

rujukan) direkabentuk menggunakan Advanced Design System (ADS). Rangkaian pembahagi 

kuasa dengan panjang laluan (ln) yang sama telah direkabentuk. Cuping sisi telah dikurangkan 

daripada -13 dB bagi ESA* kepada -19 dB bagi USA 2*. Pengukuran ke atas parameter-S dan 

corak radiasi masing-masing dibuat menggunakan Vector Network Analyzer (VNA) dan ruang 

bebas gema. Keputusan yang baik ditunjukkan untuk simulasi dan pengukuran. Daripada 

pemerhatian, pengurangan cuping sisi dan cuping jeriji yang baik bagi tatasusunan tidak sama 

jarak 2* (USA 2*) telah diperolehi dan ia dicadangkan untuk jalur frekuensi yang lebar bagi 

antena pangkalan mudah alih generasi kelima (5G). 
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Mobile communications systems have continuously evolved and revolutionized
the way people communicate, where the systems changed from fixed “point-to-point”
to wireless that has more advantages. In future, the fifth generation (5G) mobile system
is the new technology that will drive the future communication evolution, through
increase data capacity and lower latency [1, 2]. However, the spectrum below 6 GHz is
congested, therefore the spectrum above 6 GHz is being considered for the upcoming
5G mobile technology [3].

The Federal Communications Commission (FCC) of the United States (US)
allocated the frequency of spectrum bands above 24 GHz as operation band for mobile
services [4], where operation in a new millimeter frequency band is a way to avoid the
overcrowded lower frequency spectrum. This frequency band provides large amount
of spectrum to exploit large bandwidths in order to achieve very high data rates
communication systems for high speed and efficient use [5].

In order to support 5G demands, wideband, low cost and low interference base
station antenna design has attracted the attention from both academia and industry.
For this next 5G mobile communication system the distance between the antennas is
getting closer due to high frequency use. Thus base station antennas are requested
to achieve multi-band and low sidelobe level (SLL) characteristics [6, 7], where the
SLL should be less than -15 dB to reduce the interference from the other signal [8, 9].
Multi-band base station antenna design is one of the ways to avoid crowded installation
space due to limitation of the future antenna installation space such as on tower and
the roof of a building [10, 11]. One of the interests of designing the low sidelobe level
over wide frequency use antenna is on microstrip unequally spaced antenna arrays.
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Unequally spaced antenna arrays is a nonuniform array or unequal spacing
between adjacent element, which is able to control the radiation pattern [12]. Many
techniques have been proposed which has been presented and reported in [13, 14, 15]
where a lot of effort has been done on the unequally spaced antenna arrays. A
configuration of unequally spaced arrays provides low sidelobe characteristics over
wide frequency use, while this configuration is having uniform excitation coefficient
(amplitude and phase) in all array elements.

An excitation coefficients to antenna arrays elements is determined by a feeding
network, where the changes of frequency operations will change an electrical length
of transmission line and resulting a phase shift [16, 17]. Parallel feed has a well
controlled aperture distribution compared to series feed, which suffer from inherent
phase difference caused by the differences in lengths of feed lines. Thus, the design of
a parallel feed network achieving equal excitation coefficients in the wide frequency
range is seemed to be the solution [18] .

Besides, it is required to have equal magnitude and phase coefficients with
non-frequency dependence for wide frequency use implementation, which can be
obtained by designing feeding network with uniform line length [18]. Thus, unequally
spaced arrays are deemed as the potential candidates due to their ability to achieve
low sidelobe levels and suppress grating lobes in wide frequency use operations
[12, 13, 14].

Therefore, in this thesis, an unequally spaced microstrip linear antenna arrays
using a wide frequency use of feeding network, that offers a low sidelobe level is
presented. The spectrum above 6 GHz, which is 28 GHz is chosen as the designated
frequency band due to the availability of the band for mobile services [3, 4] and
also led to the increasing of bandwidth. However, the frequency will be scaled
down to 12 and 18 GHz for realization purpose, due to the limitation of radiation
pattern measurement in higher frequency. Commercial electromagnetic simulators
were employed in designing the feeding network and antenna array. For the feeding
network design, the Advanced Design System (ADS) is more easier to be employed.
Then, the design of antenna arrays and their analysis performance are implemented in
High Frequency Simulation Simulator (HFSS). Lastly, the feeding network from ADS
will be exported to HFSS simulator and the analysis of performances are performed in
HFSS.
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1.2 Problem Statement

Practically, the higher frequency use caused a shorter wavelength, which leads
the future base station antennas to have closer distance to each other compared
to the present mobile base station antenna. Consequently, it will increase the
interference with another communication. Thus, in order to counter the effects of
attenuations, which reduce the strength of the signal, the mobile system shall deploy
antenna with higher gain [19, 20, 21]. The higher gain antenna has a signal that is
confined to a narrow solid angle [7] that can reduce the interference with another
communication system. However, Andrews in [22] stated that high gain in the
narrow beam communication is new to cellular communications. In addition, network
modeling, analysis, design and optimization for preliminary status and spectrum 5G
standardization are other challenges [22].

Besides, low sidelobes are required in order to reduce interference with another
frequency reuse cell [23, 24, 25, 26], where interference can be reduced by the
reduction of the unwanted upper sidelobes, that is directed towards the neighboring
cells. Due to that, near-in sidelobe reduction methods by designing unequal array
spacing have been proposed in [27, 28, 29, 30, 31]. However, these previous works
were mainly focused on theoretical and numerical. Functional antenna configurations
and the acquired antenna characteristics should be clarified in the applications of
unequal spaced array for the upcoming 5G mobile. In addition, there has been no
investigation made for the sidelobe level performance over wide frequency use.

For base station antenna, low sidelobe characteristics are achieved by giving
adequate excitation coefficients (amplitude and phase) to array elements [32]. In this
case, the feeding network is composed of many power dividers and feeder lines that
have different values. Here, phase values, which is determined by feeder line lengths
have severe frequency dependence. Therefore, the present base station antennas are
difficult for wide frequency use. In order to achieve an unequally spaced array over a
wide frequency use, a suitable feeding network circuit must be developed. Generally,
excitation coefficients for unequally spaced array elements are uniform. Hence, T-
junctions were proposed to be constructed with equal power division and phase.
Therefore, the main design was subjected to the feeding network that must have equal
line lengths from input point to the array elements which is placed in unequal spacing.
The equality of line lengths ensures wide frequency use operation [13]. In addition, in
future 5G mobile system, wide frequency or multi-band antenna is requested [33] to
provide multifunctional operations for mobile communication [34].



4

Therefore, by considering these problems in designing the upcoming 5G base
station antenna, the unequally spaced linear antenna arrays will be proposed in order to
achieve low sidelobe over wide frequency use operation, which is one of the features
for future 5G mobile base station antenna. Through this research, three configurations
of microstrip linear antenna arrays with the same array aperture have been proposed
that consist of equally spaced array (ESA), unequally spaced array 1 (USA 1) and
unequally spaced array 2 (USA 2). The respective center spacing between element of
USA 1 and USA 2 are 0.6�� and 0.5��, while the array apertures are similar for both
designs. The ESA design is chosen as a benchmark of the array, where the results of
USA 1 and USA 2 are compared to ESA.

1.3 Objectives of the Research

The objectives of this research are stated as follows:

i. To design a microstrip single patch antenna and unequally spaced microstrip
linear antenna arrays for base station with high gain and low sidelobe level in
5G frequency band.

ii. To design the feeding network and integrate it with unequally spaced microstrip
linear antenna arrays for high gain and low sidelobe level.

iii. To design the unequally microstrip linear antenna arrays at frequency 12 GHz
and 18 GHz for realization due to the limitation of radiation pattern measurement
in higher frequency in order to achieve high gain and low sidelobe over wide
frequency use.

1.4 Scope of the Research

This research focuses on the design of an unequally spaced linear antenna
arrays in the 5G frequency band. In order to achieve the research objectives, there are
several steps to be completed. The designs consist of microstrip single patch antenna,
microstrip antenna arrays, feeding network design and the combination of feeding
network and microstrip antenna arrays. Firstly the microstrip single patch antenna
at 28 GHz with the various types of feeding is designed, simulated and optimized. The
characteristics of a feeding technique is studied based on antenna gain, return loss,
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bandwidth and radiation pattern, and the suitable feeding technique is selected for the
use in the design of antenna arrays. Next, the characteristics and performance of the
antenna arrays are investigated at frequency 28, 42 and 56 GHz.

In order to observe the microstrip linear antenna array’s sidelobe level,
measurement of radiation pattern was taken in an anechoic chamber. In this work, the
characteristics of the antenna such as gain, impedance bandwidth, radiation pattern,
reflection coefficient, amplitude and phase differences between output ports are
considered and discussed based on the requirements of 5G mobile system applications.
However, due to limitation of measurement in higher frequency, realization are done
at 12 and 18 GHz. The designs are referred to the parameters and specifications listed
in Table 3.1 in Chapter 3.

The simulation and optimization process of antenna design is performed using
High Frequency Structure Simulator (HFSS). While the feeding network is easier to
be designed by using Advanced Design System (ADS) due to the requirement of many
output ports. The RT/Duroid 5880 substrate (relative permittivity, "r = 2.2 and tangent
loss, tan� = 0.0009) is chosen due to its low loss with thickness of 0.508 mm. The
fabrication and measurement are performed to ensure that comparable performances
between simulated and measured results. The measurement of S-parameter is carried
out by using a vector network analyzer (VNA) and radiation pattern measurement is
performed in an anechoic chamber.

1.5 Contributions of the Research

Two major contributions are presented in this research, which are as follows:

i. The designs of microstrip linear unequally spaced arrays over wide frequency
use and its investigation on the effect of element spacing to the performance of
radiation pattern. The unequally spaced antenna arrays are designed at 28, 42
and 56 GHz, which results in approximately 3 dB sidelobe reduction compared
to equally spaced arrays. Then, realization at 12 and 18 GHz, which results
an approximately 6 dB sidelobe reduction compared to equally spaced antenna
array. All feeding ports having uniform amplitude and phase, then contribute to
low sidelobe level over wide frequency use.
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ii. The design of equal power division and non-frequency dependent of feeding
network with uniform excitation coefficient for each output port. In previous
works [13, 14, 27, 28, 29, 30, 35] were mainly theoretical and numerical in nature
whereas practical examples are much needed in the applications of unequally
spaced antenna array for the upcoming fifth generation (5G). Therefore in this
research, the 16 parallel output ports for three configurations of arrays, which
are the equally spaced array⇤ (ESA⇤), unequally spaced array 1⇤(USA 1⇤) and
unequally spaced array 2⇤ (USA 2⇤) are evaluated from the perspective of equal
amplitude and phase which notation ⇤ indicates frequency 12 GHz that chosen is
as reference. The large arrays are designed to have 16 elements due to the better
agreement between spaced tapered array (USA 1⇤ and USA 2⇤) and reference
patterns (ESA⇤) when optimum number of elements are used. The parallel
feeding network achieving equal excitation coefficients in the wide frequency
use has been designed, which is suitable for this antenna arrays’ configuration.
Thus, the wide frequency use antenna is achieved by employing this feeding
network, which results in constant sidelobe reduction even though the frequency
is changed. The sidelobe level is reduced from -13 dB, -16 dB and -19 dB for
the respective antenna array of equally spaced array ⇤ (ESA⇤ ), unequally spaced
array 2⇤ (USA 2⇤) and unequally spaced array 1⇤ (USA 1⇤).

1.6 Thesis Outline

This section discusses the thesis outline, which are organized into seven
chapters. In Chapter 1, the overview of the whole project is discussed, which includes
the research background, problem statement, objectives of the research, scope of the
research, contributions to the research, and thesis outline.

While, Chapter 2 focuses on the literature reviews, which started from an
overview of a 5G mobile communication system, followed by mobile base station,
microstrip patch antenna (MPA) and linear arrays. Then, the previous related works
are reviewed, which mainly focus on the design techniques, and characteristics of the
unequally linear antenna arrays and feeding network design. Chapter 3 discusses
the methodology of this research. This chapter presents the research work flows
of the whole research. Also, the process of overall antenna design and feeding
network design are shown by the flow chart. The design parameters and specifications,
optimization and simulation and measurement process, are introduced.
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