16 research outputs found

    Design of Power Optimized circuit of LC Voltage Controlled Oscillator for use in GSM Handsets

    Get PDF
    The recent performance requirements for mobile phones have been extending its area of interest. Handsets need to have high resolution graphics, pictures, and applications. Consequently, the requirement for a longer battery life has become a bare necessity. This makes optimization of power a critical issue. Along with this cell phones need to be thin and have light weight. A major portion of the power consumption of the handsets can be attributed to the LC oscillators used in the system. A Voltage Controlled Oscillator plays an important role in any communication system. It provides the frequency signal for down-conversion of input signals and also the carrier signals for the modulating signal. Proper amplitude and low phase noise are two important criteria to achieve suitable performance for a VCO in any transceiver system. The strong combination of low phase noise specifications with very low power consumption (battery operation) forces designers to use LC-VCOs. A great research effort has been done in the design of integrated voltage controlled oscillators (VCOs) using integrated or external resonators, but as their power consumption still cannot be unacceptable, today’s mobile phones commonly use external LC-VCO modules. Inductors used in these oscillators are usually bulky and have high power consumption. The low power LC oscillator increases the standby time, thus improving the battery life. Extended battery life provides processing power at lower clock speeds, enabling low leakage process that optimizes power consumption and increases battery time. Also provides integrated and sophisticated systems with improved power management. The main purpose of this project is to design a circuit for LC VCO to be used in GSM system with a tuning rage of 3-4GHz. Since the phase noise requirement for the system is less than 150dBc/Hz at 20 KHz offset. Also for a GSM system, the size of the inductor used in the oscillator is a major issue in determining its overall size, efforts will be made to optimize the size of the inductor as well

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented

    High-frequency oscillator design for integrated transceivers

    Get PDF

    High-frequency oscillator design for integrated transceivers

    Get PDF

    CMOS ASIC Design of Multi-frequency Multi-constellation GNSS Front-ends

    Get PDF
    With the emergence of the new global navigation satellite systems (GNSSs) such as Galileo, COMPASS and GLONASS, the US Global Positioning System (GPS) has new competitors. This multiplicity of constellations will offer new services and a much better satellite coverage. Public regulated service (PRS) is one of these new services that Galileo, the first global positioning service under civilian control, will offers. The PRS is a proprietary encrypted navigation designed to be more reliable and robust against jamming and provides premium quality in terms of position and timing and continuity of service, but it requires the use of FEs with extended capabilities. The project that this thesis starts from, aims to develop a dual frequency (E1 and E6) PRS receiver with a focus on a solution for professional applications that combines affordability and robustness. To limit the production cost, the choice of a monolithic design in a multi-purpose 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology have been selected, and to reduce the susceptibility to interference, the targeted receiver is composed of two independent FEs. The first ASIC described here is such FEs bundle. Each FE is composed of a radio frequency (RF) chain that includes a low-noise amplifier (LNA), a quadrature mixer, a frequency synthesizer (FS), two intermediate frequency (IF) filters, two variable-gain amplifiers (VGAs) and two 6-bit flash analog-to-digital converters (ADCs). Each have an IF bandwidth of 50 MHz to accommodate the wide-band PRS signals. The FE achieves a 30 dB of dynamic gain control at each channel. The complete receivers occupies a die area of 11.5 mm2 while consuming 115 mW from a supply of a 1.8 V. The second ASIC that targets civilian applications, is a reconfigurable single-channel FE that permits to exploit the interoperability among GNSSs. The FE can operate in two modes: a ¿narrow-band mode¿, dedicated to Beidou-B1 with an IF bandwidth of 8 MHz, and a ¿wide-band mode¿ with an IF bandwidth of 23 MHz, which can accommodate simultaneous reception of Beidou-B1/GPS-L1/Galileo-E1. These two modes consumes respectively 22.85 mA and 28.45 mA from a 1.8 V supply. Developed with the best linearity in mind, the FE shows very good linearity with an input-referred 1 dB compression point (IP1dB) of better than -27.6 dBm. The FE gain is stepwise flexible from 39 dB and to a maximum of 58 dB. The complete FE occupies a die area of only 2.6 mm2 in a 0.18 µm CMOS. To also accommodate the wide-band PRS signals in the IF section of the FE, a highly selective wide-tuning-range 4th-order Gm-C elliptic low-pass filter is used. It features an innovative continuous tuning circuit that adjusts the bias current of the Gm cell¿s input stage to control the cutoff frequency. With this circuit, the power consumption is proportional to the cutoff frequency thus the power efficiency is achieved while keeping the linearity near constant. Thanks to a Gm switching technique, which permit to keep the signal path switchless, the filter shows an extended tuning of the cutoff frequency that covers continuously a range from 7.4 MHz to 27.4 MHz. Moreover the abrupt roll-off of up to 66 dB/octave, can mitigate out-of-band interference. The filter consumes 2.1 mA and 7.5 mA at its lowest and highest cutoff frequencies respectively, and its active area occupies, 0.23 mm2. It achieves a high input-referred third-order intercept point (IIP3) of up to -1.3 dBVRMS

    A Fully Differential Phase-Locked Loop With Reduced Loop Bandwidth Variation

    Get PDF
    Phase-Locked Loops (PLLs) are essential building blocks to wireless communications as they are responsible for implementing the frequency synthesizer within a wireless transceiver. In order to maintain the rapid pace of development thus far seen in wireless technology, the PLL must develop accordingly to meet the increasingly demanding requirements imposed on it by today's (and tomorrows) wireless devices. Specically this entails meeting stringent noise specications imposed by modern wireless standards, meeting low power consumption budgets to prolong battery lifetimes, operating under reduced supply voltages imposed by modern technology nodes and within the noisy environments of complex system-on-chip (SOC) designs, all in addition to consuming as little silicon area as possible. The ability of the PLL to achieve the above is thus key to its continual progress in enabling wireless technology achieve increasingly powerful products which increasingly benet our daily lives. This thesis furthers the development of PLLs with respect to meeting the challenges imposed upon it by modern wireless technology, in two ways. Firstly, the thesis describes in detail the advantages to be gained through employing a fully dierential PLL. Specically, such PLLs are shown to achieve low noise performance, consume less silicon area than their conventional counterparts whilst consuming similar power, and being better suited to the low supply voltages imposed by continual technology downsizing. Secondly, the thesis proposes a sub-banded VCO architecture which, in addition to satisfying simultaneous requirements for large tuning ranges and low phase noise, achieves signicant reductions in PLL loop bandwidth variation. First and foremost, this improves on the stability of the PLL in addition to improving its dynamic locking behaviour whilst oering further improvements in overall noise performance. Since the proposed sub-banded architecture requires no additional power over a conventional sub-banded architecture, the solution thus remains attractive to the realm of low power design. These two developments combine to form a fully dierential PLL with reduced loop bandwidth variation. As such, the resulting PLL is well suited to meeting the increasingly demanding requirements imposed on it by today's (and tomorrows) wireless devices, and thus applicable to the continual development of wireless technology in benetting our daily lives

    Design and modelling of clock and data recovery integrated circuit in 130 nm CMOS technology for 10 Gb/s serial data communications

    Get PDF
    This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, as well as the Verilog-A modeling of an asynchronous serial link based chip to chip communication system incorporating the proposed concept. The proposed design was implemented and fabricated using the 130 nm CMOS technology offered by UMC (United Microelectronics Corporation). Different PLL-based CDR circuits topologies were investigated in terms of architecture and speed. Based on the investigation, we proposed a new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s data rate) and dual-loop topology which consists of phase-locked and frequency-locked loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop (PLL), and has a highly-desired feature that once the proper frequency has been acquired, the FLL is automatically disabled and the PLL will take over to adjust the clock edges approximately in the middle of the incoming data bits for proper sampling. Another important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing of the input serial data stream. A new quarter-rate phase detector based on the non-linear early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to eliminate the need of the front-end data pre-processing (edge detecting) units usually associated with the conventional CDR circuits. An eight-stage differential ring oscillator running at 2.5 GHz frequency center was used for the voltage-controlled oscillator (VCO) to generate low-jitter multi-phase clock signals. The transistor level simulation results demonstrated excellent performances in term of locking speed and power consumption. In order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has been modelled at gate level using the Verilog-A language and time-domain simulated

    LOW PHASE NOISE CMOS PLL FREQUENCY SYNTHESIZER DESIGN AND ANALYSIS

    Get PDF
    The phase-locked loop (PLL) frequency synthesizer is a critical device of wireless transceivers. It works as a local oscillator (LO) for frequency translation and channel selection in the transceivers but suffers phase noise including reference spurs. In this dissertation for lowing phase noise and power consumption, efforts are placed on the new design of PLL components: VCOs, charge pumps and sigma delta modulators. Based on the analysis of the VCO phase noise generation mechanism and improving on the literature results, a design-oriented phase noise model for a complementary cross-coupled LC VCO is provided. The model reveals the relationship between the phase noise performance and circuit design parameters. Using this phase noise model, an optimized 2GHz low phase noise CMOS LC VCO is designed, simulated and fabricated. The theoretical analysis results are confirmed by the simulation and experimental results. With this VCO phase noise model, we also design a low phase noise, low gain wideband VCO with the typical VCO gain around 100MHz/V. Improving upon literature results, a complete quantitative analysis of reference spur is given in this dissertation. This leads to a design of a charge pump by using a negative feedback circuit and replica bias to reduce the current mismatch which causes the reference spur. In addition, low-impedance charge/discharge paths are provided to overcome the charge pump current glitches which also cause PLL spurs. With a large bit-width high order sigma delta modulator, the fractional-N PLL has fine frequency resolution and fast locking time. Based on an analysis of sigma delta modulator models introduced in this dissertation, a 3rd-order MASH 1-1-1 digital sigma delta modulator is designed. Pipelining techniques and true single phase clock (TSPC) techniques are used for saving power and area. Included is the design of a fully integrated 2.4GHz §¢ fractional-N CMOS PLL frequency synthesizer. It takes advantage of a sigma delta modulator to get a very fine frequency resolution and a relatively large loop bandwidth. This frequency synthesizer is a 4th-order charge pump PLL with 26MHz reference frequency. The loop bandwidth is about 150KHz, while the whole PLL phase noise is about -120dBc/Hz at 1MHz frequency offset

    Analysis and Design of Robust Multi-Gb/s Clock and Data Recovery Circuits

    Get PDF
    The bandwidth demands of modern computing systems have been continually increasing and the recent focus on parallel processing will only increase the demands placed on data communication circuits. As data rates enter the multi-Gb/s range, serial data communication architectures become attractive as compared to parallel architectures. Serial architectures have long been used in fibre optic systems for long-haul applications, however, in the past decade there has been a trend towards multi-Gb/s backplane interconnects. The integration of clock and data recovery (CDR) circuits into monolithic integrated circuits (ICs) is attractive as it improves performance and reduces the system cost, however it also introduces new challenges, one of which is robustness. In serial data communication systems the CDR circuit is responsible for recovering the data from an incoming data stream. In recent years there has been a great deal of research into integrating CDR circuits into monolithic ICs. Most research has focused on increasing the bandwidth of the circuits, however in order to integrate multi-Gb/s CDR circuits robustness, as well as performance, must be considered. In this thesis CDR circuits are analyzed with respect to their robustness. The phase detector is a critical block in a CDR circuit and its robustness will play a significant role in determining the overall performance in the presence of process non-idealities. Several phase detector architectures are analyzed to determine the effects of process non-idealities. Static phase offsets are introduced as a figure of merit for phase detectors and a mathematical framework is described to characterize the negative effects of static phase offsets on CDR circuits. Two approaches are taken to improve the robustness of CDR circuits. First, calibration circuits are introduced which correct for static phase offsets in CDR circuits. Secondly, phase detector circuits are introduced which have been designed to optimize both performance and robustness. Several prototype chips which implement these schemes will be described and measured results will be presented. These results show that while CDR circuits are vulnerable to the effects of process non-idealities, there are circuit techniques which can mitigate many of these concerns

    Multi-gigabit CMOS analog-to-digital converter and mixed-signal demodulator for low-power millimeter-wave communication systems

    Get PDF
    The objective of the research is to develop high-speed ADCs and mixed-signal demodulator for multi-gigabit communication systems using millimeter-wave frequency bands in standard CMOS technology. With rapid advancements in semiconductor technologies, mobile communication devices have become more versatile, portable, and inexpensive over the last few decades. However, plagued by the short lifetime of batteries, low power consumption has become an extremely important specification in developing mobile communication devices. The ever-expanding demand of consumers to access and share information ubiquitously at faster speeds requires higher throughputs, increased signal-processing functionalities at lower power and lower costs. In today’s technology, high-speed signal processing and data converters are incorporated in almost all modern multi-gigabit communication systems. They are key enabling technologies for scalable digital design and implementation of baseband signal processors. Ultimately, the merits of a high performance mixed-signal receiver, such as data rate, sensitivity, signal dynamic range, bit-error rate, and power consumption, are directly related to the quality of the embedded ADCs. Therefore, this dissertation focuses on the analysis and design of high-speed ADCs and a novel broadband mixed-signal demodulator with a fully-integrated DSP composed of low-cost CMOS circuitry. The proposed system features a novel dual-mode solution to demodulate multi-gigabit BPSK and ASK signals. This approach reduces the resolution requirement of high-speed ADCs, while dramatically reducing its power consumption for multi-gigabit wireless communication systems.PhDGee-Kung Chang - Committee Chair; Chang-Ho Lee - Committee Member; Geoffrey Ye Li - Committee Member; Paul A. Kohl - Committee Member; Shyh-Chiang Shen - Committee Membe
    corecore