1,000 research outputs found

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    On the Distributions of the Lengths of the Longest Monotone Subsequences in Random Words

    Full text link
    We consider the distributions of the lengths of the longest weakly increasing and strongly decreasing subsequences in words of length N from an alphabet of k letters. We find Toeplitz determinant representations for the exponential generating functions (on N) of these distribution functions and show that they are expressible in terms of solutions of Painlev\'e V equations. We show further that in the weakly increasing case the generating function gives the distribution of the smallest eigenvalue in the k x k Laguerre random matrix ensemble and that the distribution itself has, after centering and normalizing, an N -> infinity limit which is equal to the distribution function for the largest eigenvalue in the Gaussian Unitary Ensemble of k x k hermitian matrices of trace zero.Comment: 30 pages, revised version corrects an error in the statement of Theorem
    • …
    corecore