70 research outputs found

    A Biomechanical Model for the Development of Myoelectric Hand Prosthesis Control Systems

    Get PDF
    Advanced myoelectric hand prostheses aim to reproduce as much of the human hand's functionality as possible. Development of the control system of such a prosthesis is strongly connected to its mechanical design; the control system requires accurate information on the prosthesis' structure and the surrounding environment, which can make development difficult without a finalized mechanical prototype. This paper presents a new framework for the development of electromyographic hand control systems, consisting of a prosthesis model based on the biomechanical structure of the human hand. The model's dynamic structure uses an ellipsoidal representation of the phalanges. Other features include underactuation in the fingers and thumb modeled with bond graphs, and a viscoelastic contact model. The model's functions are demonstrated by the execution of lateral and tripod grasps, and evaluated with regard to joint dynamics and applied forces. Finally, additions are suggested with which this model can be of use in mechanical design and patient training as well

    Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control.

    Full text link
    We tackle the challenging problem of myoelectric prosthesis control with an improved feature extraction algorithm. The proposed algorithm correlates a set of spectral moments and their nonlinearly mapped version across the temporal and spatial domains to form accurate descriptors of muscular activity. The main processing step involves the extraction of the Electromyogram (EMG) signal power spectrum characteristics directly from the time-domain for each analysis window, a step to preserve the computational power required for the construction of spectral features. The subsequent analyses involve computing 1) the correlation between the time-domain descriptors extracted from each analysis window and a nonlinearly mapped version of it across the same EMG channel; representing the temporal evolution of the EMG signals, and 2) the correlation between the descriptors extracted from differences of all possible combinations of channels and a nonlinearly mapped version of them, focusing on how the EMG signals from different channels correlates with each other. The proposed Temporal-Spatial Descriptors (TSDs) are validated on EMG data collected from six transradial amputees performing 11 classes of finger movements. Classification results showed significant reductions (at least 8%) in classification error rates compared to other methods

    Bionic hand: A brief review

    Get PDF
    The hand is one of the most crucial organs in the human body. Hand loss causes the loss of functionality in daily and work life and psychological disorders for the patients. Hand transplantation is best option to gain most of the hand function. However, the applicability of this option is limited since the side effects and the need for tissue compatibility. Electromechanical hand prosthesis also called bionic hand is an alternative option to hand transplantation. This study presents a quick review of bionic hand technology

    Surface Electromyography Feature Extraction Based on Wavelet Transform

    Get PDF
    Considering the vast variety of EMG signal applications such as rehabilitation of people suffering from some mobility limitations, scientists have done much research on EMG control system. In this regard, feature extraction of EMG signal has been highly valued as a significant technique to extract the desired information of EMG signal and remove unnecessary parts. In this study, Wavelet Transform (WT) has been applied as the main technique to extract Surface EMG (SEMG) features because WT is consistent with the nature of EMG as a nonstationary signal. Furthermore, two evaluation criteria, namely, RES index (the ratio of a Euclidean distance to a standard deviation) and scatter plot are recruited to investigate the efficiency of wavelet feature extraction. The results illustrated an improvement in class separability of hand movements in feature space. Accordingly, it has been shown that only the SEMG features extracted from first and second level of WT decomposition by second order of Daubechies family (db2) yielded the best class separability

    Index finger motion recognition using self-advise support vector machine

    Full text link
    Because of the functionality of an index finger, the disability of its motion in the modern age can decrease the person's quality of life. As a part of rehabilitation therapy, the recognition of the index finger motion for rehabilitation purposes should be done properly. This paper proposes a novel recognition system of the index finger motion suing a cutting-edge method and its improvements. The proposed system consists of combination of feature extraction method, a dimensionality reduction and well-known classifier, Support Vector Machine (SVM). An improvement of SVM, Self-advise SVM (SA-SVM), is tested to evaluate and compare its performance with the original one. The experimental result shows that SA-SVM improves the classification performance by on average 0.63 %

    INDEX FINGER MOTION RECOGNITION USING SELF-ADVISE SUPPORT VECTOR MACHINE

    Full text link

    Comparison of machine learning algorithms for EMG signal classification

    Get PDF
    The use of muscle activation signals in the control loop in biomechatronics systems is extremely important for effective and stable control. One of the methods used for this purpose is motion classification using electromyography (EMG) signals that reflect muscle activation. Classifying these signals with variable amplitude and frequency is a difficult process. On the other hand, EMG signal characteristics change over time depending on the person, task and duration. Various artificial intelligence-based methods are used for movement classification. One of these methods is machine learning. In this study, a total of 24 different models of 6 main machine learning algorithms were used for motion classification. With these models, 7 different wrist movements (rest, grip, flexion, extension, radial deviation, ulnar deviation, expanded palm) are classified. Test studies were carried out with 8 channels of EMG data taken from 4 subjects. Classification performances were compared in terms of classification accuracy and training time parameters. According to the simulation results, the Ensemble algorithm Bagged Trees model has been shown to have the highest classification performance with an average classification accuracy of 98.55%

    Reduction of Limb Position Invariant of SEMG Signals for Improved Prosthetic Control using Spectrogram

    Get PDF
    Prostheses are artificial devices that replace a missing body part, which might be lost through injury, infection, or a condition present at birth. It is proposed to re-establish the normal functions of the missing body part and can be made by hand or with a computer-aided design. As per the World Health Organization, around 160,000 individuals in Malaysia are required to use prostheses. One of the elements that influence the current prosthesis control is that the variety in the limb position and normal use results in different electromyogram (EMG) signals with the same movement at various positions. Consequently, the objective of this study is to ensure that amputees can control their prosthetics in an exact manner regardless of their hand movement and limb position. The raw EMG signals are taken from eight different hand movements’ classes at five different limb positions and each of these hand movements has seven electrodes attach to it. This paper utilizes time-frequency distribution which is spectrogram to extract the EMG feature and six SVM classification learners; linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse Gaussian were compared to find the most reasonable one for this application. The analysis performance is then verified based on classification accuracy. From the results, the overall accuracy for the classification is 65% (linear), 87.5% (quadratic) and 97.5% (cubic), 100% (fine Gaussian), 70% (medium Gaussian, and 45% (coarse Gaussian), respectively. It is believed that the study could fill in as knowledge to improve conventional prosthetic control strategies
    corecore