4 research outputs found

    A Visual Interactive Analytic Tool for Filtering and Summarizing Large Health Data Sets Coded with Hierarchical Terminologies (VIADS).

    Get PDF
    BACKGROUND: Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision-Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases. Although graphic representations can help to augment human understanding of such data sets, a graph with hundreds or thousands of nodes challenges human comprehension. To improve comprehension, new tools are needed to extract the overviews of such data sets. We aim to develop a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) as an online, and publicly accessible tool. The ultimate goals are to filter, summarize the health data sets, extract insights, compare and highlight the differences between various health data sets by using VIADS. The results generated from VIADS can be utilized as data-driven evidence to facilitate clinicians, clinical researchers, and health care administrators to make more informed clinical, research, and administrative decisions. We utilized the following tools and the development environments to develop VIADS: Django, Python, JavaScript, Vis.js, Graph.js, JQuery, Plotly, Chart.js, Unittest, R, and MySQL. RESULTS: VIADS was developed successfully and the beta version is accessible publicly. In this paper, we introduce the architecture design, development, and functionalities of VIADS. VIADS includes six modules: user account management module, data sets validation module, data analytic module, data visualization module, terminology module, dashboard. Currently, VIADS supports health data sets coded by ICD-9, ICD-10, and MeSH. We also present the visualization improvement provided by VIADS in regard to interactive features (e.g., zoom in and out, customization of graph layout, expanded information of nodes, 3D plots) and efficient screen space usage. CONCLUSIONS: VIADS meets the design objectives and can be used to filter, summarize, compare, highlight and visualize large health data sets that coded by hierarchical terminologies, such as ICD-9, ICD-10 and MeSH. Our further usability and utility studies will provide more details about how the end users are using VIADS to facilitate their clinical, research or health administrative decision making

    A visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS)

    Get PDF
    Abstract Background Vast volumes of data, coded through hierarchical terminologies (e.g., International Classification of Diseases, Tenth Revision–Clinical Modification [ICD10-CM], Medical Subject Headings [MeSH]), are generated routinely in electronic health record systems and medical literature databases. Although graphic representations can help to augment human understanding of such data sets, a graph with hundreds or thousands of nodes challenges human comprehension. To improve comprehension, new tools are needed to extract the overviews of such data sets. We aim to develop a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS) as an online, and publicly accessible tool. The ultimate goals are to filter, summarize the health data sets, extract insights, compare and highlight the differences between various health data sets by using VIADS. The results generated from VIADS can be utilized as data-driven evidence to facilitate clinicians, clinical researchers, and health care administrators to make more informed clinical, research, and administrative decisions. We utilized the following tools and the development environments to develop VIADS: Django, Python, JavaScript, Vis.js, Graph.js, JQuery, Plotly, Chart.js, Unittest, R, and MySQL. Results VIADS was developed successfully and the beta version is accessible publicly. In this paper, we introduce the architecture design, development, and functionalities of VIADS. VIADS includes six modules: user account management module, data sets validation module, data analytic module, data visualization module, terminology module, dashboard. Currently, VIADS supports health data sets coded by ICD-9, ICD-10, and MeSH. We also present the visualization improvement provided by VIADS in regard to interactive features (e.g., zoom in and out, customization of graph layout, expanded information of nodes, 3D plots) and efficient screen space usage. Conclusions VIADS meets the design objectives and can be used to filter, summarize, compare, highlight and visualize large health data sets that coded by hierarchical terminologies, such as ICD-9, ICD-10 and MeSH. Our further usability and utility studies will provide more details about how the end users are using VIADS to facilitate their clinical, research or health administrative decision making

    A Visual Analytic Tool (VIADS) to Assist the Hypothesis Generation Process in Clinical Research: Mixed Methods Usability Study

    No full text
    BackgroundVisualization can be a powerful tool to comprehend data sets, especially when they can be represented via hierarchical structures. Enhanced comprehension can facilitate the development of scientific hypotheses. However, the inclusion of excessive data can make visualizations overwhelming. ObjectiveWe developed a visual interactive analytic tool for filtering and summarizing large health data sets coded with hierarchical terminologies (VIADS). In this study, we evaluated the usability of VIADS for visualizing data sets of patient diagnoses and procedures coded in the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). MethodsWe used mixed methods in the study. A group of 12 clinical researchers participated in the generation of data-driven hypotheses using the same data sets and time frame (a 1-hour training session and a 2-hour study session) utilizing VIADS via the think-aloud protocol. The audio and screen activities were recorded remotely. A modified version of the System Usability Scale (SUS) survey and a brief survey with open-ended questions were administered after the study to assess the usability of VIADS and verify their intense usage experience with VIADS. ResultsThe range of SUS scores was 37.5 to 87.5. The mean SUS score for VIADS was 71.88 (out of a possible 100, SD 14.62), and the median SUS was 75. The participants unanimously agreed that VIADS offers new perspectives on data sets (12/12, 100%), while 75% (8/12) agreed that VIADS facilitates understanding, presentation, and interpretation of underlying data sets. The comments on the utility of VIADS were positive and aligned well with the design objectives of VIADS. The answers to the open-ended questions in the modified SUS provided specific suggestions regarding potential improvements for VIADS, and the identified problems with usability were used to update the tool. ConclusionsThis usability study demonstrates that VIADS is a usable tool for analyzing secondary data sets with good average usability, good SUS score, and favorable utility. Currently, VIADS accepts data sets with hierarchical codes and their corresponding frequencies. Consequently, only specific types of use cases are supported by the analytical results. Participants agreed, however, that VIADS provides new perspectives on data sets and is relatively easy to use. The VIADS functionalities most appreciated by participants were the ability to filter, summarize, compare, and visualize data. International Registered Report Identifier (IRRID)RR2-10.2196/3941
    corecore