64 research outputs found

    Development and evaluation of image-guided neuroendoscopy, with investigation of post-imaging brain distortion and accuracy of frameless stereotaxy

    Get PDF
    Neuroendoscopy enables a surgeon to operate deep within the brain whilst limiting morbidity through a minimally invasive approach. Technical advances in illumination, instrumentation and camera design, along with evidence for improved clinical outcome, have increased the indications for this technique and have ensured widespread popularity. However, broader application of neuroendoscopy is restricted by the necessity for direct vision of targets and by spatial disorientation. The aim of this investigation was to overcome these limitations by combining neuronavigation with neuroendoscopy to develop Image-Guided Neuroendoscopy (IGN). The strategy adopted for this was firstly to select, assess and validate a neuronavigation system, secondly to develop methods of endoscope tracking and frameless stereotactic implantation. Thirdly, to assess the impact of post-imaging brain distortion upon neuronavigation, fourthly to correct distortion of the endoscope image and finally to assess the use of graphics overlay in IGN. Laboratory phantom accuracy assessments revealed a mean point localisation error for the navigation system pointers of0.8mm (SD 0.4mm) with CT imaging, for the tracked endoscope of 1.5mm (SD 0.8mm) and for frameless stereotaxy of 1.3mm (SD 0.6mm). An in vivo study revealed a mean Euclidean error of 4.8mm (SD 2.0mm) for frame less stereotactic biopsy. The navigation system was evaluated through a clinical series of 100 cases, the frameless stereotactic technique was employed in 21 brain biopsy procedures and IGN evaluated in 5 procedures. The magnitude of post-imaging brain distortion was determined and correlations discovered with pre-operative image characteristics. The conclusions of this thesis are that IGN can be accomplished with acceptable accuracy, including frameless stereotactic implantation, and that the impact of postimaging brain distortion will not negate the value of IGN in most cases. Thus, the method developed for IGN has overcome both major constraints of neuroendoscopy, enabling endoscopic surgery to pass through and beyond the ventricular wall, to be undertaken safely in cases with distorted anatomy and opening the potential for wider application of these minimally invasive techniques

    Review on Image Guided Surgery Systems

    Get PDF
    Nowadays modern imaging techniques can grant an excellent quality 3D images that clearly show the anatomy, vascularity, pathology and active functions of the tissues. The ability to register these preoperative images to each other, to offer a comprehensive information, and later the ability to register the image space to the patient space intraoperatively is the core for the image guided surgery systems (IGS). Other main elements of the system include the process of tracking the surgical tools intraoperatively by reflecting their positions within the 3D image model. In some occasions an intraoperative image may be acquired and registered to the preoperative images to make sure the 3D model used to guide the operation describes the actual situation at surgery time. This survey overviews the history of IGS and discusses the modern system components for a reliable application and gives information about the different applications in medical specialties that benefited from the use of IGS

    Neurosurgical Ultrasound Pose Estimation Using Image-Based Registration and Sensor Fusion - A Feasibility Study

    Get PDF
    Modern neurosurgical procedures often rely on computer-assisted real-time guidance using multiple medical imaging modalities. State-of-the-art commercial products enable the fusion of pre-operative with intra-operative images (e.g., magnetic resonance [MR] with ultrasound [US] images), as well as the on-screen visualization of procedures in progress. In so doing, US images can be employed as a template to which pre-operative images can be registered, to correct for anatomical changes, to provide live-image feedback, and consequently to improve confidence when making resection margin decisions near eloquent regions during tumour surgery. In spite of the potential for tracked ultrasound to improve many neurosurgical procedures, it is not widely used. State-of-the-art systems are handicapped by optical tracking’s need for consistent line-of-sight, keeping tracked rigid bodies clean and rigidly fixed, and requiring a calibration workflow. The goal of this work is to improve the value offered by co-registered ultrasound images without the workflow drawbacks of conventional systems. The novel work in this thesis includes: the exploration and development of a GPU-enabled 2D-3D multi-modal registration algorithm based on the existing LC2 metric; and the use of this registration algorithm in the context of a sensor and image-fusion algorithm. The work presented here is a motivating step in a vision towards a heterogeneous tracking framework for image-guided interventions where the knowledge from intraoperative imaging, pre-operative imaging, and (potentially disjoint) wireless sensors in the surgical field are seamlessly integrated for the benefit of the surgeon. The technology described in this thesis, inspired by advances in robot localization demonstrate how inaccurate pose data from disjoint sources can produce a localization system greater than the sum of its parts

    Advanced cranial navigation

    Get PDF
    Neurosurgery is performed with extremely low margins of error. Surgical inaccuracy may have disastrous consequences. The overall aim of this thesis was to improve accuracy in cranial neurosurgical procedures by the application of new technical aids. Two technical methods were evaluated: augmented reality (AR) for surgical navigation (Papers I-II) and the optical technique of diffuse reflectance spectroscopy (DRS) for real-time tissue identification (Papers III-V). Minimally invasive skull-base endoscopy has several potential benefits compared to traditional craniotomy, but approaching the skull base through this route implies that at-risk organs and surgical targets are covered by bone and out of the surgeon’s direct line of sight. In Paper I, a new application for AR-navigated endoscopic skull-base surgery, based on an augmented-reality surgical navigation (ARSN) system, was developed. The accuracy of the system, defined by mean target registration error (TRE), was evaluated and found to be 0.55±0.24 mm, the lowest value reported error in the literature. As a first step toward the development of a cranial application for AR navigation, in Paper II this ARSN system was used to enable insertions of biopsy needles and external ventricular drainages (EVDs). The technical accuracy (i.e., deviation from the target or intended path) and efficacy (i.e., insertion time) were assessed on a 3D-printed realistic, anthropomorphic skull and brain phantom; Thirty cranial biopsies and 10 EVD insertions were performed. Accuracy for biopsy was 0.8±0.43 mm with a median insertion time of 149 (87-233) seconds, and for EVD accuracy was 2.9±0.8 mm at the tip with a median angular deviation of 0.7±0.5° and a median insertion time of 188 (135-400) seconds. Glial tumors grow diffusely in the brain, and patient survival is correlated with the extent of tumor removal. Tumor borders are often invisible. Resection beyond borders as defined by conventional methods may further improve a patient’s prognosis. In Paper III, DRS was evaluated for discrimination between glioma and normal brain tissue ex vivo. DRS spectra and histology were acquired from 22 tumor samples and 9 brain tissue samples retrieved from 30 patients. Sensitivity and specificity for the detection of low-grade gliomas were 82.0% and 82.7%, respectively, with an AUC of 0.91. Acute ischemic stroke caused by large vessel occlusion is treated with endovascular thrombectomy, but treatment failure can occur when clot composition and thrombectomy technique are mismatched. Intra-procedural knowledge of clot composition could guide the choice of treatment modality. In Paper IV, DRS, in vivo, was evaluated for intravascular clot characterization. Three types of clot analogs, red blood cell (RBC)-rich, fibrin-rich and mixed clots, were injected into the external carotids of a domestic pig. An intravascular DRS probe was used for in-situ measurements of clots, blood, and vessel walls, and the spectral data were analyzed. DRS could differentiate clot types, vessel walls, and blood in vivo (p<0,001). The sensitivity and specificity for detection were 73.8% and 98.8% for RBC clots, 100% and 100% for mixed clots, and 80.6% and 97.8% for fibrin clots, respectively. Paper V evaluated DRS for characterization of human clot composition ex vivo: 45 clot units were retrieved from 29 stroke patients and examined with DRS and histopathological evaluation. DRS parameters correlated with clot RBC fraction (R=81, p<0.001) and could be used for the classification of clot type with sensitivity and specificity rates for the detection of RBC-rich clots of 0.722 and 0.846, respectively. Applied in an intravascular probe, DRS may provide intra-procedural information on clot composition to improve endovascular thrombectomy efficiency

    The Cape Town Stereotactic pointer clinical development and Applications

    Get PDF
    This dissertation describes the development and clinical use of a novel stereotactic neurosurgical system, the Cape Town Stereotactic Pointer (CTSP). This system has four main components; a halo containing three fiducials also serves as the platform for a tripod pointing device which is set with the aid of a 3D phantom or a printed setting diagram, and software which enables transformation of imaging space into patient space. Laboratory tests indicated an application accuracy of 1.9 +/- 0.6mm using the 3D phantom to set the tripod. From the first clinical application, the system underwent a series of iterations which could broadly be divided into four successive phases of refinement. This took place over a six year period, encompassing one hundred patients who underwent 115 stereotactic procedures. Indications for surgery included biopsy (62.6%), aspiration (15.7%) and cannulation (21.7%) and the surgical objective was realized in 101/109 cases (92.7%). Given the fact that six of the eight failures represented errors of surgical judgment that could not be ascribed to the device, and each of two system errors resulted in a significant modification to the system, the CTSP demonstrated a satisfactory level of accuracy in the clinical setting. This was accomplished at an acceptable complication rate, with one death five days after surgery attributable to a stereotactic procedure (mortality 0.9%) and major morbidity in two cases (1.7%); thirteen patients experienced minor complications, all of which proved to be transient (11.3%). A simple protocol for use of the CTSP evolved over the course of this study, making it easier for neurosurgeons from varying backgrounds to introduce stereotaxis into their practice with the help of this system. In addition to satisfactory levels of clinical reliability and safety, the system was versatile and also well tolerated by patients. It is hoped that the CTSP provides a costeffective alternative for neurosurgeons working in under-resourced settings. Sixty units of the production version of the CTSP have been sold and the system is now in use in ten countries

    Modular MRI Guided Device Development System: Development, Validation and Applications

    Get PDF
    Since the first robotic surgical intervention was performed in 1985 using a PUMA industrial manipulator, development in the field of surgical robotics has been relatively fast paced, despite the tremendous costs involved in developing new robotic interventional devices. This is due to the clear advantages to augmented a clinicians skill and dexterity with the precision and reliability of computer controlled motion. A natural extension of robotic surgical intervention is the integration of image guided interventions, which give the promise of reduced trauma, procedure time and inaccuracies. Despite magnetic resonance imaging (MRI) being one of the most effective imaging modalities for visualizing soft tissue structures within the body, MRI guided surgical robotics has been frustrated by the high magnetic field in the MRI image space and the extreme sensitivity to electromagnetic interference. The primary contributions of this dissertation relate to enabling the use of direct, live MR imaging to guide and assist interventional procedures. These are the two focus areas: creation both of an integrated MRI-guided development platform and of a stereotactic neural intervention system. The integrated series of modules of the development platform represent a significant advancement in the practice of creating MRI guided mechatronic devices, as well as an understanding of design requirements for creating actuated devices to operate within a diagnostic MRI. This knowledge was gained through a systematic approach to understanding, isolating, characterizing, and circumventing difficulties associated with developing MRI-guided interventional systems. These contributions have been validated on the levels of the individual modules, the total development system, and several deployed interventional devices. An overview of this work is presented with a summary of contributions and lessons learned along the way

    New Mechatronic Systems for the Diagnosis and Treatment of Cancer

    Get PDF
    Both two dimensional (2D) and three dimensional (3D) imaging modalities are useful tools for viewing the internal anatomy. Three dimensional imaging techniques are required for accurate targeting of needles. This improves the efficiency and control over the intervention as the high temporal resolution of medical images can be used to validate the location of needle and target in real time. Relying on imaging alone, however, means the intervention is still operator dependent because of the difficulty of controlling the location of the needle within the image. The objective of this thesis is to improve the accuracy and repeatability of needle-based interventions over conventional techniques: both manual and automated techniques. This includes increasing the accuracy and repeatability of these procedures in order to minimize the invasiveness of the procedure. In this thesis, I propose that by combining the remote center of motion concept using spherical linkage components into a passive or semi-automated device, the physician will have a useful tracking and guidance system at their disposal in a package, which is less threatening than a robot to both the patient and physician. This design concept offers both the manipulative transparency of a freehand system, and tremor reduction through scaling currently offered in automated systems. In addressing each objective of this thesis, a number of novel mechanical designs incorporating an remote center of motion architecture with varying degrees of freedom have been presented. Each of these designs can be deployed in a variety of imaging modalities and clinical applications, ranging from preclinical to human interventions, with an accuracy of control in the millimeter to sub-millimeter range

    Computer assisted navigation in spine surgery

    Get PDF
    INTRODUCTION: Computer aided navigation is an important tool which has the capability to enhance surgical accuracy, while reducing negative outcomes. However, it is a relatively new technology and has not yet been accepted as the standard of care in all settings. OBJECTIVES: The objective of the present study is to present the development and current state of technologies in computer aided navigation in Orthopedic Spine Surgery, specifically in navigated placement of pedicle screws, to examine the clinical need for navigation, it's effect on surgical accuracy and clinical outcome and to determine whether the benefits justify the costs, and make recommendations for future use and enhancements. CONCLUSION: Computer aided navigation in pedicle screw placement enhances accuracy, reduces the probability of negative outcomes, reduces the exposure of the patient and staff to radiation, reduces operative time, and provides cost-savings. Future investigations may potentially enhance this effect further with the use of innovative augmented reality type displays

    Methods for interventional magnetic resonance imaging

    Get PDF
    This thesis has as its central aim to demonstrate, develop, discuss and promote new methods and technology for improving interventional low field magnetic resonance imaging. The work addresses problems related to accurate localization of minimally invasive surgical tools by describing novel devices and improvements to prior art techniques, such as optical tracking. In addition to instrument guidance, ablative treatment of liver tumours is discussed in connection with low field temperature measurement and the work describes suitable sequences for qualitative temperature imaging. For instrument localization, a method utilising ex vivo Overhauser enhancement of a catheter like structure was demonstrated. An enhancement factor of 10 was achieved, proving that a substantial signal gain is possible through the use of ex vivo-enhanced liquid. Similarly, a method for biopsy needle tip tracking was developed; where the position of the tip was tracked with a signal from a miniaturized electron spin resonance sample and gradient pulses. At an update rate of 10 samples per second, the accuracy was measured to be better than ±2 mm within a homogeneous sphere of 300 mm. Optical tracking methods concentrated on new indications of use for the developed optical tracking system and associated software: The system was applied to guide the needle 35 times into first sacral root foramina, with a success rate of 97%. It was also used in five bone biopsies, all of which were performed successfully, the samples allowed for a pathologic diagnosis, and the percutaneous procedures could be performed in less than 40 minutes. A new patient tracker device was developed for staged neurosurgical procedures and demonstrated with two patient cases. In the temperature measurement study, spin echo, gradient echo and completely balanced steady-state free precession sequences were optimized for maximal temperature sensitivity and the optimized sequences compared. The steady-state sequence seemed the most promising for the prediction of ablated volume in liver.reviewe
    • …
    corecore