29,303 research outputs found

    Rapid Control Prototyping for Reconfigurable Assembly Workstations

    Get PDF
    Department of System Design and Control EngineeringDiverse customer demands and rapid technology change have led to a paradigm shift in the manufacturing industry, from mass production to mass customization, and eventually to personalization. In the past, manufacturers have faced a challenge to produce a large volume of a product at low cost. Today, they should however produce a very small volume of a highly personalized product at mass production cost. In order to meet these challenges, rapid configuration or reconfiguration of manufacturing systems are crucial. Therefore, many studies have discussed reconfigurable manufacturing systems, emphasizing on dynamic scheduling and flexible shop floor logistics. However, little attention has given to the hardware control and the corresponding software development, although they are very important and time-consuming tasks for manufacturing system reconfiguration. Therefore, the main objective of this paper is to quickly design, test, and verify the control software both in a virtual and in a real environment. To do this, we propose a procedure of rapid control prototyping consisting of virtual factory construction, control software development and a final calibration procedure. Rapid control prototyping facilitates engineers to quickly develop control software including communication inputs and outputs, prior to constructing a real shop floor. The proposed simultaneous procedure of manufacturing system design and its control software development will significantly reduce the reconfiguration time of a manufacturing system.clos

    SELECTION OF OPTICAL SYSTEM PARAMETERS AND METHODS FOR SOFTWARE DEVELOPMENT OF TECHNICAL VISION COMPLEX FOR THREE-DIMENSIONAL PRINTING

    Get PDF
    Subject of Research.The paper presents the study of methods for control of rapid prototyping processes with the use of technical vision hardware and software system. Product monitoring is a crucial function of any manufacturing process. It becomes more important when the monitoring is performed during the the product manufacturing. Three-dimensional printing technology requires this kind of monitoring system in order to improve the visual and durable qualities of the product, optimize the material costs and the speed of manufacturing. Method. The parameters of the optical system for capturing images in the printing process are defined in theory. Optical systems are selected providing the necessary image quality. The analysis of the camera placement configuration has been carried out to match optimally the task. The analysis was based on overall dimensions of the 3D printer, its working area and free space in the printer case. The ways for solution of software part problems were analyzed. Main Results. A mathematical apparatus was developed for calculation of the optical system parameters of a technical vision complex. Different variants of optical systems were selected for efficiency verification of the hardware and software system. Different methods for development of programs and algorithms for data processing from video cameras were considered. Practical Relevance. The development of the hardware and software system that controls the rapid prototyping process has a significant benefit in expanding the possibilities of automating rapid prototyping processes. The results of the work can be useful in quality control of the product during its manufacturing, in disclosure of deviations from the virtual three-dimensional model, in development of recommendations for control commands update in order to improve the quality and increase the speed of product manufacturin

    Integration and visualization of rapid prototyping and reverse engineering.

    Get PDF
    Rapid prototyping, where a part is built gradually by adding materials layer-by-layer, is fully automatic and it offers many advantages over traditional manufacturing processes. Integrating reverse engineering and rapid prototyping technologies can facilitate the process of product development. Data transfer is critical in integrating reverse engineering and rapid prototyping process cycle. It must be efficient and free from errors or ambiguity. The processing of data clouds, from the laser scanner, was investigated in this thesis. Three integration approaches ((i) 3-D model direct slicing. (ii) Mesh generation from unstructured data cloud (Sun, 2001). (iii) Slice contour file generation directly from data cloud (Lee, 2001).) have been implemented. The advantages and disadvantages of approaches are examined through case studies. A visual simulation system has been developed for simulating rapid prototyping process---FDM (Fused Deposition Modeling). The visual simulation technique simulates the part prior to fabricating the physical model. Careful examination of the virtual prototype before the actual fabrication can help minimize unwanted design iterations. The visualization capability of the system is demonstrated by comparing virtual prototypes with corresponding physical prototypes. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2001 .W8. Source: Masters Abstracts International, Volume: 40-06, page: 1602. Adviser: Waguih El Maraghy. Thesis (M.A.Sc.)--University of Windsor (Canada), 2002

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Real time integration of user preferences into virtual prototypes

    Get PDF
    Within new product development (NPD), both virtual prototypes and physical prototypes play important roles in creating, testing and modifying designs. However, in the current design process, these two forms of prototyping methods are normally used independently and converted from one to the other during different design phases. This conversion process is time consuming and expensive and also introduces potential information loss/corruption problems. If the design process requires many iterations, it may simply be impractical to generate all the conversions that are theoretically required. Therefore, the integration of virtual and physical prototyping may offer a possible solution where the design definition is maintained simultaneously in both the virtual and physical environment. The overall aim of this research was to develop an interface or a tool that achieves real time integration of physical and virtual prototyping. “Real time integration” here means changes to the virtual prototypes will reflect any changes that have been made contemporaneously to the physical prototypes, and vice versa. Thus, conversion of the prototype from physical to virtual (or vice versa) will be achieved immediately, hence saving time and cost. A review of the literature was undertaken to determine what previous research has been conducted in this area. The result of the review shows the research in this area is still in its infancy. The research hypothesis was developed through the use of a questionnaire survey. Totally 102 questionnaires were sent to designers, design directors or design managers to address the issue: will industrial designers want to make use of real time integration and if so, how? The outcome from the literature review drove further development of the research hypothesis and an initial pilot experiment to test this. The pilot trial was designed to address the research questions: ‱ Can real time physical and virtual prototyping integration be conveniently demonstrated? ‱ Will designers and users be comfortable using the integration method? ‱ Will users recognise the benefits of the integration? The results showed that real time integration between physical and virtual prototyping is necessary in helping designers develop new products and for getting users more closely involved. The future research suggested is that more investigations and experiments are needed to explore a proper method that simultaneously employing these two types of prototyping in product development process. Keywords: Physical Prototyping; Virtual Prototyping; Integration; Real Time.</p

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Product Focused Freeform Fabrication Education

    Get PDF
    Presented in this paper is our experience of teaching freeform fabrication to students at the Missouri University of Science and Technology, and to high school students and teachers. The emphasis of the curriculum is exposing students to rapid product development technologies with the goal of creating awareness to emerging career opportunities in CAD/CAM. Starting from solid modeling, principles of freeform fabrication, to applications of rapid prototyping and manufacturing in industry sponsored product development projects, students can learn in-depth freeform fabrication technologies. Interactive course content with hands-on experience for product development is the key towards the success of the program.Mechanical Engineerin

    A method to Formalise the Rapid Prototyping Process

    Get PDF
    Facing the increasing complexity of the product design area, (reduction of cycle times, introduction of simultaneous engineering, introduction of digital mock-up, ... ) a research department which wants to define a rapid prototyping process is confronted to the problem of the tools’ choice. Therefore, we will propose in this article, a method allowing to conceive such a process. In a first chapter, we present the rapid prototyping area in the product design environment, in a second chapter we will propose our method illustrated by an industrial case
    • 

    corecore