1,281 research outputs found

    Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications

    Get PDF
    Energy harvesting is the process of attaining energy from the external sources and transforming it into usable electrical energy. An analytical model of piezoelectric energy harvester has been developed to determine the output voltage across an electrical circuit when it is forced to undergo a base excitation. This model gives an easy approach to design and investigate the behavior of piezoelectric material. Numerical simulations have been carried out to determine the effect of frequency and loading on a Lead zirconate titanate (PZT-5A) piezoelectric material. It has been observed that the output voltage from the harvester increases when loading increases whereas its resonance frequency decreases. The analytical results were found to be in good agreement with the experimental and numerical simulation results

    Maximum Effectiveness of Electrostatic Energy Harvesters When Coupled to Interface Circuits

    No full text
    Accepted versio

    3D Energy Harvester Evaluation

    Get PDF
    This paper discusses the characterization and evaluation of an MEMS based electrostatic generator, a part of the power supply unit of the self-powered microsystem[1,2,3]. The designed generator is based on electrostatic converter and uses the principle of conversion of non-electric energy into electrical energy by periodical modification of gap between electrodes of a capacitor [4]. The structure is designed and modeled as three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure (about 100Hz) by usage of modified long cantilever spring design, minimum area of the chip, 3D work mode, the ability to be tuned to reach desired parameters, proves promising directions of possible further development

    Maximum performance of piezoelectric energy harvesters when coupled to interface circuits

    Get PDF
    This paper presents a complete optimization of a piezoelectric vibration energy harvesting system, including a piezoelectric transducer, a power conditioning circuit with full semiconductor device models, a battery and passive components. To the authors awareness, this is the first time and all of these elements have been integrated into one optimization. The optimization is done within a framework, which models the combined mechanical and electrical elements of a complete piezoelectric vibration energy harvesting system. To realize the optimization, an optimal electrical damping is achieved using a single-supply pre-biasing circuit with a buck converter to charge the battery. The model is implemented in MATLAB and verified in SPICE. The results of the full system model are used to find the mechanical and electrical system parameters required to maximize the power output. The model, therefore, yields the upper bound of the output power and the system effectiveness of complete piezoelectric energy harvesting systems and, hence, provides both a benchmark for assessing the effectiveness of existing harvesters and a framework to design the optimized harvesters. It is also shown that the increased acceleration does not always result in increased power generation as a larger damping force is required, forcing a geometry change of the harvester to avoid exceeding the piezoelectric breakdown voltage. Similarly, increasing available volume may not result in the increased power generation because of the difficulty of resonating the beam at certain frequencies whilst utilizing the entire volume. A maximum system effectiveness of 48% is shown to be achievable at 100 Hz for a 3.38-cm3 generator

    Integrated Power Supply for MEMS Sensor

    Get PDF
    The recent expansion of wireless sensor networks and the rapid development of low-power consumption devices and MEMS devices have been driving research on harvester converting ambient energy into electricity to replace batteries that require costly maintenance. Harvesting energy from ambient environment vibration becomes an ideal power supply mode. The power supply module can be integrated with the MEMS sensor. There are many ways to convert ambient energy into electrical energy, such as photocells, thermocouples, vibration, and wind and so on. Among these energy-converting ways, the ambient vibration energy harvesting is more attractive because the vibration is everywhere in our daily environment. Based on the analysis of the basic theory of the electret electrostatic harvester, the basic equations and equivalent analysis model of electret electrostatic harvester are established. The experimental tests for the output performance of electret electrostatic harvester are completed. For the electret material, the material itself can also provide a constant voltage to avoid the use of additional power, which provides an effective way for electrostatic harvesting. Therefore, the electret electrostatic harvesting structure is a kind of ideal energy harvesting method using ambient vibration and can be easily integrated with the MEMS system

    Electrostatic Conversion for Vibration Energy Harvesting

    Get PDF
    This chapter focuses on vibration energy harvesting using electrostatic converters. It synthesizes the various works carried out on electrostatic devices, from concepts, models and up to prototypes, and covers both standard (electret-free) and electret-based electrostatic vibration energy harvesters (VEH).Comment: This is an author-created, un-copyedited version of a chapter accepted for publication in Small-Scale Energy Harvesting, Intech. The definitive version is available online at: http://dx.doi.org/10.5772/51360 Please cite as: S. Boisseau, G. Despesse and B. Ahmed Seddik, Electrostatic Conversion for Vibration Energy Harvesting, Small-Scale Energy Harvesting, Intech, 201
    corecore